Deploy Spark MLlib model with PMML InferenceService¶
Setup¶
- Install 
pyspark3.0.x andpyspark2pmmlpip install pyspark~=3.0.0 pip install pyspark2pmml - Get JPMML-SparkML jar
 
Train a Spark MLlib model and export to PMML file¶
Launch pyspark with --jars to specify the location of the JPMML-SparkML
              uber-JAR
            
pyspark --jars ./jpmml-sparkml-executable-1.6.3.jar
            Fitting a Spark ML pipeline:
from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import RFormula
df = spark.read.csv("Iris.csv", header = True, inferSchema = True)
formula = RFormula(formula = "Species ~ .")
classifier = DecisionTreeClassifier()
pipeline = Pipeline(stages = [formula, classifier])
pipelineModel = pipeline.fit(df)
from pyspark2pmml import PMMLBuilder
pmmlBuilder = PMMLBuilder(sc, df, pipelineModel)
pmmlBuilder.buildFile("DecisionTreeIris.pmml")
            Upload the DecisionTreeIris.pmml to a GCS bucket, note that the PMMLServer
              expect model file name to be model.pmml
            
gsutil cp ./DecisionTreeIris.pmml gs://$BUCKET_NAME/sparkpmml/model.pmml
            Create the InferenceService with PMMLServer¶
Create the InferenceService with pmml predictor and specify the
              storageUri with bucket location you uploaded to
            
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "spark-pmml"
spec:
  predictor:
    pmml:
      storageUri: gs://kfserving-examples/models/sparkpmml
                  apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "spark-pmml"
spec:
  predictor:
    model:
      modelFormat:
        name: pmml
      storageUri: gs://kfserving-examples/models/sparkpmml
                  Apply the InferenceService custom resource
            
kubectl apply -f spark_pmml.yaml
            Expected Output
$ inferenceservice.serving.kserve.io/spark-pmml created
              Wait the InferenceService to be ready
            
kubectl wait --for=condition=Ready inferenceservice spark-pmml
inferenceservice.serving.kserve.io/spark-pmml condition met
            Run a prediction¶
The first step is to determine the ingress IP
                and ports and set INGRESS_HOST and INGRESS_PORT
MODEL_NAME=spark-pmml
INPUT_PATH=@./pmml-input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice spark-pmml -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH
            Expected Output
* Connected to spark-pmml.default.35.237.217.209.xip.io (35.237.217.209) port 80 (#0)
> POST /v1/models/spark-pmml:predict HTTP/1.1
> Host: spark-pmml.default.35.237.217.209.xip.io
> User-Agent: curl/7.73.0
> Accept: */*
> Content-Length: 45
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 45 out of 45 bytes
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 39
< content-type: application/json; charset=UTF-8
< date: Sun, 07 Mar 2021 19:32:50 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 14
<
* Connection #0 to host spark-pmml.default.35.237.217.209.xip.io left intact
{"predictions": [[1.0, 0.0, 1.0, 0.0]]}