Skip to content

Deploy Custom Python Serving Runtime with InferenceService

When the out-of-the-box Serving Runtime does not fit your need, you can choose to build your own model server using KServe ModelServer API to deploy as Custom Serving Runtime on KServe.

Setup

  1. Install pack CLI to build your custom model server image.

Create and Deploy Custom REST ServingRuntime

Implement Custom Model using KServe API

KServe.Model base class mainly defines three handlers preprocess, predict and postprocess, these handlers are executed in sequence, the output of the preprocess is passed to predict as the input, the predictor handler executes the inference for your model, the postprocess handler then turns the raw prediction result into user-friendly inference response. There is an additional load handler which is used for writing custom code to load your model into the memory from local file system or remote model storage, a general good practice is to call the load handler in the model server class __init__ function, so your model is loaded on startup and ready to serve prediction requests.

import argparse

from torchvision import models
from typing import Dict, Union
import torch
import numpy as np
from kserve import Model, ModelServer

class AlexNetModel(Model):
    def __init__(self, name: str):
       super().__init__(name)
       self.name = name
       self.load()

    def load(self):
        self.model = models.alexnet(pretrained=True)
        self.model.eval()
        self.ready = True

    def predict(self, payload: Dict, headers: Dict[str, str] = None) -> Dict:
        img_data = payload["instances"][0]["image"]["b64"]
        raw_img_data = base64.b64decode(img_data)
        input_image = Image.open(io.BytesIO(raw_img_data))
        preprocess = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225]),
        ])
        input_tensor = preprocess(input_image).unsqueeze(0)
        output = self.model(input_tensor)
        torch.nn.functional.softmax(output, dim=1)
        values, top_5 = torch.topk(output, 5)
        result = values.flatten().tolist()
        response_id = generate_uuid()
        return {"predictions": result}

if __name__ == "__main__":
    model = AlexNetModel("custom-model")
    ModelServer().start([model])

Build Custom Serving Image with BuildPacks

Buildpacks allows you to transform your inference code into images that can be deployed on KServe without needing to define the Dockerfile. Buildpacks automatically determines the python application and then install the dependencies from the requirements.txt file, it looks at the Procfile to determine how to start the model server. Here we are showing how to build the serving image manually with pack, you can also choose to use kpack to run the image build on the cloud and continuously build/deploy new versions from your source git repository.

You can use pack cli to build and push the custom model server image

pack build --builder=heroku/buildpacks:20 ${DOCKER_USER}/custom-model:v1
docker push ${DOCKER_USER}/custom-model:v1

Note: If your buildpack command fails, make sure you have a runtimes.txt file with the correct python version specified. See the custom model server runtime.txt file as an example.

Deploy Locally and Test

Launch the docker image built from last step with buildpack.

docker run -ePORT=8080 -p8080:8080 ${DOCKER_USER}/custom-model:v1

Send a test inference request locally with input.json

curl localhost:8080/v1/models/custom-model:predict -d @./input.json

Expected Output

{"predictions": [[14.861763000488281, 13.94291877746582, 13.924378395080566, 12.182709693908691, 12.00634765625]]}

Deploy the REST Custom Serving Runtime on KServe

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: custom-model
spec:
  predictor:
    containers:
      - name: kserve-container
        image: ${DOCKER_USER}/custom-model:v1
In the custom.yaml file edit the container image and replace ${DOCKER_USER} with your Docker Hub username.

Arguments

You can supply additional command arguments on the container spec to configure the model server.

  • --workers: Spawn the specified number of uvicorn workers(multi-processing) of the model server, the default value is 1, this option is often used to help increase the resource utilization of the container.
  • --http_port: The http port model server is listening on, the default REST port is 8080.
  • --model_name: The model name deployed in the model server, the default name the same as the service name.
  • --max_asyncio_workers: Max number of workers to spawn for python async io loop, by default it is min(32,cpu.limit + 4).
  • --enable_latency_logging: Whether to log latency metrics per request, the default is True.
  • --configure_logging: Whether to configure KServe and Uvicorn logging, the default is True. In this case you may want to set the KServe ModelServer's log_config parameter to pass a dictionary containing all the logging directives and configurations (see the Python upstream docs for more info). The alternative is to use the --log_config_file argument described below.
  • --log_config_file: The path of the Python config file configuration to use (either a json or a yaml file). This file allows to override the default Uvicorn configuration shipped with KServe. The default is None.
  • --access_log_format: A string representing the access log format configuration to use. The functionality is provided by the asgi-logger library and it allows to override only the uvicorn.access's format configuration with a richer set of fields (output hardcoded to stdout). This limitation is currently due to the ASGI specs that don't describe how access logging should be implemented in detail (please refer to this Uvicorn github issue for more info). By default is None.

Environment Variables

You can supply additional environment variables on the container spec.

  • STORAGE_URI: load a model from a storage system supported by KServe e.g. pvc:// s3://. This acts the same as storageUri when using a built-in predictor. The data will be available at /mnt/models in the container. For example, the following STORAGE_URI: "pvc://my_model/model.onnx" will be accessible at /mnt/models/model.onnx
  • PROTOCOL: specify the protocol version supported by the model e.g V1. This acts the same as protocolVersion when using a built-in predictor.
  • KSERVE_LOGLEVEL: sets the kserve and kserve_trace's logger verbosity. Default is INFO.

Apply the yaml to deploy the InferenceService on KServe

kubectl apply -f custom.yaml

Expected Output

$ inferenceservice.serving.kserve.io/custom-model created

Run a Prediction

The first step is to determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT

MODEL_NAME=custom-model
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice ${MODEL_NAME} -o jsonpath='{.status.url}' | cut -d "/" -f 3)

curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/${MODEL_NAME}:predict -d $INPUT_PATH

Expected Output

*   Trying 169.47.250.204...
* TCP_NODELAY set
* Connected to 169.47.250.204 (169.47.250.204) port 80 (#0)
> POST /v1/models/custom-model:predict HTTP/1.1
> Host: custom-model.default.example.com
> User-Agent: curl/7.64.1
> Accept: */*
> Content-Length: 105339
> Content-Type: application/x-www-form-urlencoded
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< content-length: 232
< content-type: text/html; charset=UTF-8
< date: Wed, 26 Feb 2020 15:19:15 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 213
<
* Connection #0 to host 169.47.250.204 left intact
{"predictions": [[14.861762046813965, 13.942917823791504, 13.9243803024292, 12.182711601257324, 12.00634765625]]}

Delete the InferenceService

kubectl delete -f custom.yaml

Create and Deploy Custom gRPC ServingRuntime

KServe gRPC ServingRuntimes enables high performance inference data plane which implements the Open(v2) Inference Protocol:

  • gRPC is built on top of HTTP/2 for addressing the shortcomings of head-of-line-blocking and pipelining,
  • gRPC transports binary data format with Protobuf which is efficient to send over the wire.

Compared to REST it has limited support for browser and the message is not human-readable which requires additional debugging tools.

Implement Custom Model using KServe API

For Open(v2) Inference Protocol, KServe provides InferRequest and InferResponse API object for predict, preprocess, postprocess handlers to abstract away the implementation details of REST/gRPC decoding and encoding over the wire.

model_grpc.py
import io
from typing import Dict

import torch
from kserve import InferRequest, InferResponse, InferOutput, Model, ModelServer
from kserve.utils.utils import generate_uuid
from PIL import Image
from torchvision import models, transforms


# This custom predictor example implements the custom model following KServe v2 inference gPPC protocol,
# the input can be raw image bytes or image tensor which is pre-processed by transformer
# and then passed to predictor, the output is the prediction response.
class AlexNetModel(Model):
    def __init__(self, name: str):
        super().__init__(name)
        self.name = name
        self.load()
        self.model = None
        self.ready = False

    def load(self):
        self.model = models.alexnet(pretrained=True)
        self.model.eval()
        self.ready = True

    def predict(self, payload: InferRequest, headers: Dict[str, str] = None) -> InferResponse:
        req = payload.inputs[0]
        input_image = Image.open(io.BytesIO(req.data[0]))
        preprocess = transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225]),
            ])

        input_tensor = preprocess(input_image)
        input_tensor = input_tensor.unsqueeze(0)
        output = self.model(input_tensor)
        torch.nn.functional.softmax(output, dim=1)
        values, top_5 = torch.topk(output, 5)
        result = values.flatten().tolist()
        response_id = generate_uuid()
        infer_output = InferOutput(name="output-0", shape=list(values.shape), datatype="FP32", data=result)
        infer_response = InferResponse(model_name=self.name, infer_outputs=[infer_output], response_id=response_id)
        return infer_response


if __name__ == "__main__":
    model = AlexNetModel("custom-model")
    model.load()
    ModelServer().start([model])

Build Custom Serving Image with BuildPacks

Similar to building the REST custom image, you can also use pack cli to build and push the custom gRPC model server image

pack build --builder=heroku/buildpacks:20 ${DOCKER_USER}/custom-model-grpc:v1
docker push ${DOCKER_USER}/custom-model-grpc:v1

Note: If your buildpack command fails, make sure you have a runtimes.txt file with the correct python version specified. See the custom model server runtime.txt file as an example.

Deploy Locally and Test

Launch the docker image built from last step with buildpack.

docker run -ePORT=8081 -p8081:8081 ${DOCKER_USER}/custom-model-grpc:v1

Send a test inference request locally using InferenceServerClient grpc_test_client.py

from kserve import InferRequest, InferInput, InferenceServerClient
import json
import base64
import os

client = InferenceServerClient(url=os.environ.get("INGRESS_HOST", "localhost")+":"+os.environ.get("INGRESS_PORT", "8081"),
                               channel_args=(('grpc.ssl_target_name_override', os.environ.get("SERVICE_HOSTNAME", "")),))
json_file = open("./input.json")
data = json.load(json_file)
infer_input = InferInput(name="input-0", shape=[1], datatype="BYTES", data=[base64.b64decode(data["instances"][0]["image"]["b64"])])
request = InferRequest(infer_inputs=[infer_input], model_name="custom-model")
res = client.infer(infer_request=request)
print(res)

python grpc_test_client.py

Expected Output

id: "df27b8a5-f13e-4c7a-af61-20bdb55b6523"
outputs {
  name: "output-0"
  datatype: "FP32"
  shape: 1
  shape: 5
  contents {
    fp32_contents: 14.9756203
    fp32_contents: 14.036808
    fp32_contents: 13.9660349
    fp32_contents: 12.2522783
    fp32_contents: 12.0862684
  }
}

model_name: "custom-model"
id: "df27b8a5-f13e-4c7a-af61-20bdb55b6523"
outputs {
  name: "output-0"
  datatype: "FP32"
  shape: 1
  shape: 5
  contents {
    fp32_contents: 14.9756203
    fp32_contents: 14.036808
    fp32_contents: 13.9660349
    fp32_contents: 12.2522783
    fp32_contents: 12.0862684
  }
}

Deploy the gRPC Custom Serving Runtime on KServe

Create the InferenceService yaml and expose the gRPC port by specifying on ports section, currently only one port is allowed to expose and by default HTTP port is exposed.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: custom-model-grpc
spec:
  predictor:
    containers:
      - name: kserve-container
        image: ${DOCKER_USER}/custom-model-grpc:v1
        ports:
          - name: h2c
            containerPort: 8081
            protocol: TCP
In the custom_grpc.yaml file edit the container image and replace ${DOCKER_USER} with your Docker Hub username.

Arguments

You can supply additional command arguments on the container spec to configure the model server.

  • --grpc_port: the http port model server is listening on, the default gRPC port is 8081.
  • --model_name: the model name deployed in the model server, the default name the same as the service name.
  • enable_latency_logging: whether to log latency metrics per request, the default is True.

Apply the yaml to deploy the InferenceService on KServe

kubectl apply -f custom_grpc.yaml

Expected Output

$ inferenceservice.serving.kserve.io/custom-model-grpc created

Run a gRPC Prediction

The first step is to determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT

MODEL_NAME=custom-model
SERVICE_HOSTNAME=$(kubectl get inferenceservice custom-model-grpc -o jsonpath='{.status.url}' | cut -d "/" -f 3)

Send an inference request to the gRPC service using InferenceServerClient grpc_test_client.py.

python grpc_test_client.py

Expected Output

id: "df27b8a5-f13e-4c7a-af61-20bdb55b6523"
outputs {
  name: "output-0"
  datatype: "FP32"
  shape: 1
  shape: 5
  contents {
    fp32_contents: 14.9756203
    fp32_contents: 14.036808
    fp32_contents: 13.9660349
    fp32_contents: 12.2522783
    fp32_contents: 12.0862684
  }
}

model_name: "custom-model"
id: "df27b8a5-f13e-4c7a-af61-20bdb55b6523"
outputs {
  name: "output-0"
  datatype: "FP32"
  shape: 1
  shape: 5
  contents {
    fp32_contents: 14.9756203
    fp32_contents: 14.036808
    fp32_contents: 13.9660349
    fp32_contents: 12.2522783
    fp32_contents: 12.0862684
  }
}

Parallel Model Inference

By default, the models are loaded in the same process and inference is executed in the same process as the HTTP or gRPC server, if you are hosting multiple models the inference can only be run for one model at a time which limits the concurrency when you share the container for the models. KServe integrates RayServe which provides a programmable API to deploy models as separate python workers so the inference can be performed in parallel when serving multiple custom models.

import kserve
from typing import Dict
from ray import serve

@serve.deployment(name="custom-model", num_replicas=2)
class AlexNetModel(kserve.Model):
    def __init__(self):
       self.name = "custom-model"
       super().__init__(self.name)
       self.load()

    def load(self):
        ...

    def predict(self, request: Dict) -> Dict:
        ...

if __name__ == "__main__":
    kserve.ModelServer().start({"custom-model": AlexNetModel})
fractional gpu example
@serve.deployment(name="custom-model", num_replicas=2, ray_actor_options={"num_cpus":1, "num_gpus": 0.5})
class AlexNetModel(kserve.Model):
    def __init__(self):
       self.name = "custom-model"
       super().__init__(self.name)
       self.load()

    def load(self):
        ...

    def predict(self, request: Dict) -> Dict:
        ...

if __name__ == "__main__":
    ray.init(num_cpus=2, num_gpus=1)
    kserve.ModelServer().start({"custom-model": AlexNetModel})
The more details for ray fractional cpu and gpu can be found here.

The full code example can be found here.

Modify the Procfile to web: python -m model_remote and then run the above pack command, it builds the serving image which launches each model as separate python worker and web server routes to the model workers by name.

parallel_inference

Back to top