KServe Local Model Cache¶
By caching LLM models locally, the InferenceService
startup time can be greatly improved. For deployments with more than one replica,
the local persistent volume can serve multiple pods with the warmed up model cache.
LocalModelCache
is a KServe custom resource to specify which model from persistent storage to cache on local storage of the Kubernetes node.LocalModelNodeGroup
is a KServe custom resource to manage the node group for caching the models and the local persistent storage.LocalModelNode
is a KServe custom resource to track the status of the models cached on given local node.
In this example, we demonstrate how you can cache the models using Kubernetes nodes' local disk NVMe volumes from HF hub.
Enable Local Model Cache¶
By default, the model caching is disabled in KServe. To enable it, you need to set the enabled
field to true
in the localModel
section of inferenceservice-config
ConfigMap.
kubectl edit configmap inferenceservice-config -n kserve
localModel: |-
{
"enabled": true,
"jobNamespace": "kserve-localmodel-jobs",
"defaultJobImage" : "kserve/storage-initializer:latest",
"fsGroup": 1000,
"localModelAgentImage": "kserve/kserve-localmodelnode-agent:latest",
"localModelAgentCpuRequest": "100m",
"localModelAgentMemoryRequest": "200Mi",
"localModelAgentCpuLimit": "100m",
"localModelAgentMemoryLimit": "300Mi"
}
Configure Local Model Download Job Namespace¶
Before creating the LocalModelCache
resource to cache the models, you need to make sure the credentials are configured in the download job namespace.
The download jobs are created in the configured namespace kserve-localmodel-jobs
. In this example we are caching the models from HF hub, so the HF token secret should be created pre-hand in the same namespace
along with the storage container configurations.
Create the HF Hub token secret.
apiVersion: v1
kind: Secret
metadata:
name: hf-secret
namespace: kserve-localmodel-jobs
type: Opaque
stringData:
HF_TOKEN: xxxx # fill in the hf hub token
Tip
Model download job namespace can be configured in the inferenceservice-config
ConfigMap by editing the jobNamespace
value in the localModel
section.
The default namespace is kserve-localmodel-jobs
.
Create the HF Hub cluster storage container to refer to the HF Hub secret.
apiVersion: "serving.kserve.io/v1alpha1"
kind: ClusterStorageContainer
metadata:
name: hf-hub
spec:
container:
name: storage-initializer
image: kserve/storage-initializer:latest
env:
- name: HF_TOKEN # Option 2 for authenticating with HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-secret
key: HF_TOKEN
optional: false
resources:
requests:
memory: 100Mi
cpu: 100m
limits:
memory: 1Gi
cpu: "1"
supportedUriFormats:
- prefix: hf://
workloadType: localModelDownloadJob
Create the LocalModelNodeGroup¶
Create the LocalModelNodeGroup
using the local persistent volume with specified local NVMe volume path.
- The
storageClassName
should be set tolocal-storage
. - The
nodeAffinity
should be specified which nodes to cache the model using node selector. - Local path should be specified on PV as the local storage to cache the models.
apiVersion: serving.kserve.io/v1alpha1
kind: LocalModelNodeGroup
metadata:
name: workers
spec:
storageLimit: 1.7T
persistentVolumeClaimSpec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1700G
storageClassName: local-storage
volumeMode: Filesystem
volumeName: models
persistentVolumeSpec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
capacity:
storage: 1700G
local:
path: /models
storageClassName: local-storage
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: nvidia.com/gpu-product
operator: In
values:
- NVIDIA-A100-SXM4-80GB
After the LocalModelNodeGroup
is created, KServe creates an agent DaemonSet on each node (nodes matching the nodeAffinity
specified in LocalModelNodeGroup) in the kserve
namespace to monitor the local model cache lifecycle.
kubectl get daemonset -n kserve workers-agent
Success
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
workers-agent 1 1 1 1 1 <none> 5d17h
Create the LocalModelCache¶
Create the LocalModelCache
to specify the source model storage URI to pre-download the models to local NVMe volumes for warming up the cache.
sourceModelUri
is the model persistent storage location where to download the model for local cache.nodeGroups
is specified to indicate which nodes to cache the model.
apiVersion: serving.kserve.io/v1alpha1
kind: LocalModelCache
metadata:
name: meta-llama3-8b-instruct
spec:
sourceModelUri: 'hf://meta-llama/meta-llama-3-8b-instruct'
modelSize: 10Gi
nodeGroups:
- workers
After LocalModelCache
is created, KServe creates the download jobs on each node in the group to cache the model in local storage.
kubectl get jobs meta-llama3-8b-instruct-kind-worker -n kserve-localmodel-jobs
Success
NAME STATUS COMPLETIONS DURATION AGE
meta-llama3-8b-instruct-gptq-kind-worker Complete 1/1 4m21s 5d17h
The download job is created using the provisioned PV/PVC.
kubectl get pvc meta-llama3-8b-instruct -n kserve-localmodel-jobs
Success
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE
meta-llama3-8b-instruct Bound meta-llama3-8b-instruct-download 10Gi RWO local-storage <unset> 9h
Check the LocalModelCache Status¶
LocalModelCache
shows the model download status for each node in the group.
kubectl get localmodelcache meta-llama3-8b-instruct -oyaml
apiVersion: serving.kserve.io/v1alpha1
kind: LocalModelCache
metadata:
name: meta-llama3-8b-instruct-gptq
spec:
modelSize: 10Gi
nodeGroup: workers
sourceModelUri: hf://meta-llama/meta-llama-3-8b-instruct
status:
copies:
available: 1
total: 1
nodeStatus:
kind-worker: NodeDownloaded
LocalModelNode
shows the model download status of each model expected to cache on the given node.
kubectl get localmodelnode kind-worker -oyaml
Success
apiVersion: serving.kserve.io/v1alpha1
kind: LocalModelNode
metadata:
name: kind-worker
spec:
localModels:
- modelName: meta-llama3-8b-instruct
sourceModelUri: hf://meta-llama/meta-llama-3-8b-instruct
status:
modelStatus:
meta-llama3-8b-instruct: ModelDownloaded
Deploy InferenceService using the LocalModelCache¶
Finally you can deploy the LLMs with InferenceService
using the local model cache if the model has been previously cached
using the LocalModelCache
resource by matching the model storage URI.
kubectl apply -f - <<EOF
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: huggingface-llama3
spec:
predictor:
model:
modelFormat:
name: huggingface
args:
- --model_name=llama3
storageUri: hf://meta-llama/meta-llama-3-8b-instruct
resources:
limits:
cpu: "6"
memory: 24Gi
nvidia.com/gpu: "1"
requests:
cpu: "6"
memory: 24Gi
nvidia.com/gpu: "1"
EOF