First InferenceService
Run your first InferenceService
¶
In this tutorial, you will deploy a ScikitLearn InferenceService.
This inference service loads a simple iris ML model, send a list of attributes and print the prediction for the class of iris plant."
Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the trained model and it gets some super powers out of the box .
1. Create test InferenceService
¶
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
spec:
predictor:
sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"
Once you've created your YAML file (named something like "sklearn.yaml"):
kubectl create namespace kserve-test
kubectl apply -f sklearn.yaml -n kserve-test
2. Check InferenceService
status.¶
kubectl get inferenceservices sklearn-iris -n kserve-test
NAME URL READY PREV LATEST PREVROLLEDOUTREVISION LATESTREADYREVISION AGE
sklearn-iris http://sklearn-iris.kserve-test.example.com True 100 sklearn-iris-predictor-default-47q2g 7d23h
3. Determine the ingress IP and ports¶
Execute the following command to determine if your kubernetes cluster is running in an environment that supports external load balancers
$ kubectl get svc istio-ingressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
istio-ingressgateway LoadBalancer 172.21.109.129 130.211.10.121 ... 17h
If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.
export INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
If the EXTERNAL-IP value is none (or perpetually pending), your environment does not provide an external load balancer for the ingress gateway. In this case, you can access the gateway using the service’s node port.
# GKE
export INGRESS_HOST=worker-node-address
# Minikube
export INGRESS_HOST=$(minikube ip)
# Other environment(On Prem)
export INGRESS_HOST=$(kubectl get po -l istio=ingressgateway -n istio-system -o jsonpath='{.items[0].status.hostIP}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
Alternatively you can do Port Forward
for testing purpose
INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}')
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE} 8080:80
# start another terminal
export INGRESS_HOST=localhost
export INGRESS_PORT=8080
4. Curl the InferenceService
¶
First prepare your inference input request
{
"instances": [
[6.8, 2.8, 4.8, 1.4],
[6.0, 3.4, 4.5, 1.6]
]
}
If you have configured the DNS, you can directly curl the InferenceService
with the URL obtained from the status print.
e.g
curl -v http://sklearn-iris.kserve-test.${CUSTOM_DOMAIN}/v1/models/sklearn-iris:predict -d @./iris-input.json
If you don't want to go through the trouble to get a real domain, you can instead use "magic" dns xip.io. The key is to get the external IP for your cluster.
kubectl get svc istio-ingressgateway --namespace istio-system
EXTERNAL-IP
column's value(in this case 35.237.217.209)
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
istio-ingressgateway LoadBalancer 10.51.253.94 35.237.217.209
Next step is to setting up the custom domain:
kubectl edit cm config-domain --namespace knative-serving
Now in your editor, change example.com to {{external-ip}}.xip.io (make sure to replace {{external-ip}} with the IP you found earlier).
With the change applied you can now directly curl the URL
curl -v http://sklearn-iris.kserve-test.35.237.217.209.xip.io/v1/models/sklearn-iris:predict -d @./iris-input.json
If you do not have DNS, you can still curl with the ingress gateway external IP using the HOST Header.
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict -d @./iris-input.json
If you are calling from in cluster you can curl with the internal url with host {{InferenceServiceName}}.{{namespace}}
curl -v http://sklearn-iris.kserve-test/v1/models/sklearn-iris:predict -d @./iris-input.json
5. Run Performance Test¶
# use kubectl create instead of apply because the job template is using generateName which doesn't work with kubectl apply
kubectl create -f https://raw.githubusercontent.com/kserve/kserve/release-0.7/docs/samples/v1beta1/sklearn/v1/perf.yaml -n kserve-test
Expected Outpout
kubectl logs load-test8b58n-rgfxr -n kserve-test
Requests [total, rate, throughput] 30000, 500.02, 499.99
Duration [total, attack, wait] 1m0s, 59.998s, 3.336ms
Latencies [min, mean, 50, 90, 95, 99, max] 1.743ms, 2.748ms, 2.494ms, 3.363ms, 4.091ms, 7.749ms, 46.354ms
Bytes In [total, mean] 690000, 23.00
Bytes Out [total, mean] 2460000, 82.00
Success [ratio] 100.00%
Status Codes [code:count] 200:30000
Error Set: