Predict on a Triton InferenceService with TorchScript model¶
While Python is a suitable and preferred language for many scenarios requiring dynamism and ease of iteration, there are equally many situations where precisely these properties of Python are unfavorable. One environment in which the latter often applies is production – the land of low latencies and strict deployment requirements. For production scenarios, C++ is very often the language of choice, The following example will outline the path PyTorch provides to go from an existing Python model to a serialized representation that can be loaded and executed purely from C++ like Triton Inference Server, with no dependency on Python.
Setup¶
- Skip tag resolution for
nvcr.io
which requires auth to resolve triton inference server image digestkubectl patch cm config-deployment --patch '{"data":{"registriesSkippingTagResolving":"nvcr.io"}}' -n knative-serving
- Increase progress deadline since pulling triton image and big bert model may longer than default timeout for 120s, this setting requires knative 0.15.0+
kubectl patch cm config-deployment --patch '{"data":{"progressDeadline": "600s"}}' -n knative-serving
Export as Torchscript Model¶
A PyTorch model’s journey from Python to C++ is enabled by Torch Script, a representation of a PyTorch model
that can be understood, compiled and serialized by the Torch Script compiler. If you are starting out from an existing PyTorch model written in the vanilla eager
API,
you must first convert your model to Torch Script.
Convert the above model via Tracing and serialize the script module to a file
import torch
# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
example = torch.rand(1, 3, 32, 32)
traced_script_module = torch.jit.trace(net, example)
traced_script_module.save("model.pt")
Store your trained model on GCS in a Model Repository¶
Once the model is exported as Torchscript model file, the next step is to upload the model to a GCS bucket. Triton supports loading multiple models so it expects a model repository which follows a required layout in the bucket.
<model-repository-path>/
<model-name>/
[config.pbtxt]
[<output-labels-file> ...]
<version>/
<model-definition-file>
<version>/
<model-definition-file>
...
<model-name>/
[config.pbtxt]
[<output-labels-file> ...]
<version>/
<model-definition-file>
<version>/
<model-definition-file>
gs://kfserving-examples/models/torchscript
, the layout can be
torchscript/
cifar/
config.pbtxt
1/
model.pt
name
attribute of both the inputs and outputs in the configuration must
follow a specific naming convention i.e. “INPUT__0
, INPUT__1
and OUTPUT__0
, OUTPUT__1
such that INPUT__0
refers to first input and INPUT__1 refers to the second input, etc.
name: "cifar"
platform: "pytorch_libtorch"
max_batch_size: 1
input [
{
name: "INPUT__0"
data_type: TYPE_FP32
dims: [3,32,32]
}
]
output [
{
name: "OUTPUT__0"
data_type: TYPE_FP32
dims: [10]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]
To schedule the model on GPU you would need to change the instance_group
with GPU kind
instance_group [
{
count: 1
kind: KIND_GPU
}
]
Inference with HTTP endpoint¶
Create the InferenceService¶
Create the inference service yaml with the above specified model repository uri.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torchscript-cifar10
spec:
predictor:
triton:
storageUri: gs://kfserving-examples/models/torchscript
runtimeVersion: 20.10-py3
env:
- name: OMP_NUM_THREADS
value: "1"
Warning
Setting OMP_NUM_THREADS env is critical for performance, OMP_NUM_THREADS is commonly used in numpy, PyTorch, and Tensorflow to perform multi-threaded linear algebra. We want one thread per worker instead of many threads per worker to avoid contention.
kubectl apply -f torchscript.yaml
Expected Output
$ inferenceservice.serving.kserve.io/torchscript-cifar10 created
Run a prediction with curl¶
The first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
The latest Triton Inference Server already switched to use KServe prediction V2 protocol, so the input request needs to follow the V2 schema with the specified data type, shape.
MODEL_NAME=cifar10
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice torchscript-cifar10 -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -X -H "Host: ${SERVICE_HOSTNAME}" POST http://${INGRESS_HOST}:${INGRESS_PORT}/v2/models/$MODEL_NAME/infer -d $INPUT_PATH
* Connected to torchscript-cifar.default.svc.cluster.local (10.51.242.87) port 80 (#0)
> POST /v2/models/cifar10/infer HTTP/1.1
> Host: torchscript-cifar.default.svc.cluster.local
> User-Agent: curl/7.47.0
> Accept: */*
> Content-Length: 110765
> Content-Type: application/x-www-form-urlencoded
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< content-length: 315
< content-type: application/json
< date: Sun, 11 Oct 2020 21:26:51 GMT
< x-envoy-upstream-service-time: 8
< server: istio-envoy
<
* Connection #0 to host torchscript-cifar.default.svc.cluster.local left intact
{"model_name":"cifar10","model_version":"1","outputs":[{"name":"OUTPUT__0","datatype":"FP32","shape":[1,10],"data":[-2.0964810848236086,-0.13700756430625916,-0.5095657706260681,2.795621395111084,-0.5605481863021851,1.9934231042861939,1.1288187503814698,-1.4043136835098267,0.6004879474639893,-2.1237082481384279]}]}
Run a performance test¶
QPS rate --rate
can be changed in the perf.yaml.
kubectl create -f perf.yaml
Requests [total, rate, throughput] 6000, 100.02, 100.01
Duration [total, attack, wait] 59.995s, 59.99s, 4.961ms
Latencies [min, mean, 50, 90, 95, 99, max] 4.222ms, 5.7ms, 5.548ms, 6.384ms, 6.743ms, 9.286ms, 25.85ms
Bytes In [total, mean] 1890000, 315.00
Bytes Out [total, mean] 665874000, 110979.00
Success [ratio] 100.00%
Status Codes [code:count] 200:6000
Error Set:
Inference with gRPC endpoint¶
Create the InferenceService¶
Create the inference service yaml and expose the gRPC port, currently only one port is allowed to expose either HTTP or gRPC port and by default HTTP port is exposed.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torchscript-cifar10
spec:
predictor:
triton:
storageUri: gs://kfserving-examples/models/torchscript
runtimeVersion: 20.10-py3
ports:
- containerPort: 9000
name: h2c
protocol: TCP
env:
- name: OMP_NUM_THREADS
value: "1"
Apply the gRPC InferenceService
yaml and then you can call the model with tritonclient
python library after InferenceService
is ready.
kubectl apply -f torchscript_grpc.yaml
Add Transformer to the InferenceService¶
Triton Inference Server
expects tensors as input data, often times a pre-processing step is required before making the prediction call
when the user is sending in request with raw input format. Transformer component can be specified on InferenceService spec for user implemented pre/post processing code.
User is responsible to create a python class which extends from KServe KFModel
base class which implements preprocess
handler to transform raw input
format to tensor format according to V2 prediction protocol, postprocess
handle is to convert raw prediction response to a more user friendly response.
Implement pre/post processing functions¶
import kserve
from typing import List, Dict
from PIL import Image
import torchvision.transforms as transforms
import logging
import io
import numpy as np
import base64
logging.basicConfig(level=kserve.constants.KSERVE_LOGLEVEL)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
def image_transform(instance):
byte_array = base64.b64decode(instance['image_bytes']['b64'])
image = Image.open(io.BytesIO(byte_array))
a = np.asarray(image)
im = Image.fromarray(a)
res = transform(im)
logging.info(res)
return res.tolist()
class ImageTransformer(kserve.KFModel):
def __init__(self, name: str, predictor_host: str):
super().__init__(name)
self.predictor_host = predictor_host
def preprocess(self, inputs: Dict) -> Dict:
return {
'inputs': [
{
'name': 'INPUT__0',
'shape': [1, 3, 32, 32],
'datatype': "FP32",
'data': [image_transform(instance) for instance in inputs['instances']]
}
]
}
def postprocess(self, results: Dict) -> Dict:
# Here we reshape the data because triton always returns the flatten 1D array as json if not explicitly requesting binary
# since we are not using the triton python client library which takes care of the reshape it is up to user to reshape the returned tensor.
return {output["name"] : np.array(output["data"]).reshape(output["shape"]) for output in results["outputs"]}
Build Transformer docker image¶
docker build -t $DOCKER_USER/image-transformer-v2:latest -f transformer.Dockerfile . --rm
Create the InferenceService with Transformer¶
Please use the YAML file to create the InferenceService, which adds the image transformer component with the docker image built from above.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-transfomer
spec:
predictor:
triton:
storageUri: gs://kfserving-examples/models/torchscript
runtimeVersion: 20.10-py3
env:
- name: OMP_NUM_THREADS
value: "1"
transformer:
containers:
- image: kfserving/image-transformer-v2:latest
name: kserve-container
command:
- "python"
- "-m"
- "image_transformer_v2"
args:
- --model_name
- cifar10
- --protocol
- v2
kubectl apply -f torch_transformer.yaml
Expected Output
$ inferenceservice.serving.kserve.io/torch-transfomer created
Run a prediction with curl¶
The transformer does not enforce a specific schema like predictor but the general recommendation is to send in as a list of object(dict):
"instances": <value>|<list-of-objects>
{
"instances": [
{
"image_bytes": { "b64": "aW1hZ2UgYnl0ZXM=" },
"caption": "seaside"
},
{
"image_bytes": { "b64": "YXdlc29tZSBpbWFnZSBieXRlcw==" },
"caption": "mountains"
}
]
}
SERVICE_NAME=torch-transfomer
MODEL_NAME=cifar10
INPUT_PATH=@./image.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice $SERVICE_NAME -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -X POST -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH
Expected Output
> POST /v2/models/cifar:predict HTTP/2
> user-agent: curl/7.71.1
> accept: */*
> content-length: 3422
> content-type: application/x-www-form-urlencoded
>
* We are completely uploaded and fine
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
* old SSL session ID is stale, removing
* Connection state changed (MAX_CONCURRENT_STREAMS == 4294967295)!
< HTTP/2 200
< content-length: 338
< content-type: application/json; charset=UTF-8
< date: Thu, 08 Oct 2020 13:15:14 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 52
<
{"model_name": "cifar", "model_version": "1", "outputs": [{"name": "OUTPUT__0", "datatype": "FP32", "shape": [1, 10], "data": [-0.7299326062202454, -2.186835289001465, -0.029627874493598938, 2.3753483295440674, -0.3476247489452362, 1.3253062963485718, 0.5721136927604675, 0.049311548471450806, -0.3691796362400055, -1.0804035663604736]}]}