Skip to content

First InferenceService

Run your first InferenceService

In this tutorial, you will deploy an InferenceService with a predictor that will load a scikit-learn model trained with the iris dataset. This dataset has three output classes: Iris Setosa, Iris Versicolour, and Iris Virginica.

You will then send an inference request to your deployed model in order to get a prediction for the class of iris plant your request corresponds to.

Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the storage location of the model and it gets some super powers out of the box 🚀.

1. Create a namespace

First, create a namespace to use for deploying KServe resources:

kubectl create namespace kserve-test

2. Create an InferenceService

Next, define a new InferenceService YAML for the model and apply it to the cluster.

A new predictor schema was introduced in v0.8.0. New InferenceServices should be deployed using the new schema. The old schema is provided as reference.

kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  predictor:
    model:
      modelFormat:
        name: sklearn
      storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
EOF
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  predictor:
    sklearn:
      storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
EOF

Warning

Do not deploy InferenceServices in control plane namespaces (i.e. namespaces with control-plane label). The webhook is configured in a way to skip these namespaces to avoid any privilege escalations. Deploying InferenceServices to these namespaces will result in the storage initializer not being injected into the pod, causing the pod to fail with the error No such file or directory: '/mnt/models'.

3. Check InferenceService status.

kubectl get inferenceservices sklearn-iris -n kserve-test

Expected Output

NAME           URL                                                 READY   PREV   LATEST   PREVROLLEDOUTREVISION   LATESTREADYREVISION                    AGE
sklearn-iris   http://sklearn-iris.kserve-test.example.com         True           100                              sklearn-iris-predictor-default-47q2g   7d23h

If your DNS contains example.com please consult your admin for configuring DNS or using custom domain.

4. Determine the ingress IP and ports

Execute the following command to determine if your kubernetes cluster is running in an environment that supports external load balancers

kubectl get svc istio-ingressgateway -n istio-system

Expected Output

NAME                   TYPE           CLUSTER-IP       EXTERNAL-IP      PORT(S)   AGE
istio-ingressgateway   LoadBalancer   172.21.109.129   130.211.10.121   ...       17h

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.

export INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')

If the EXTERNAL-IP value is none (or perpetually pending), your environment does not provide an external load balancer for the ingress gateway. In this case, you can access the gateway using the service’s node port.

# GKE
export INGRESS_HOST=worker-node-address
# Minikube
export INGRESS_HOST=$(minikube ip)
# Other environment(On Prem)
export INGRESS_HOST=$(kubectl get po -l istio=ingressgateway -n istio-system -o jsonpath='{.items[0].status.hostIP}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

Alternatively you can do Port Forward for testing purposes.

INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}')
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE} 8080:80
Open another terminal, and enter the following to perform inference:
export INGRESS_HOST=localhost
export INGRESS_PORT=8080

SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict" -d @./iris-input.json

5. Perform inference

First, prepare your inference input request inside a file:

cat <<EOF > "./iris-input.json"
{
  "instances": [
    [6.8,  2.8,  4.8,  1.4],
    [6.0,  3.4,  4.5,  1.6]
  ]
}
EOF

Depending on your setup, use one of the following commands to curl the InferenceService:

If you have configured the DNS, you can directly curl the InferenceService with the URL obtained from the status print. e.g

curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test.${CUSTOM_DOMAIN}/v1/models/sklearn-iris:predict -d @./iris-input.json

If you don't want to go through the trouble to get a real domain, you can instead use "magic" dns xip.io. The key is to get the external IP for your cluster.

kubectl get svc istio-ingressgateway --namespace istio-system
Look for the EXTERNAL-IP column's value(in this case 35.237.217.209)

NAME                   TYPE           CLUSTER-IP     EXTERNAL-IP      PORT(S)                                                                                                                                      AGE
istio-ingressgateway   LoadBalancer   10.51.253.94   35.237.217.209

Next step is to setting up the custom domain:

kubectl edit cm config-domain --namespace knative-serving

Now in your editor, change example.com to {{external-ip}}.xip.io (make sure to replace {{external-ip}} with the IP you found earlier).

With the change applied you can now directly curl the URL

curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test.35.237.217.209.xip.io/v1/models/sklearn-iris:predict -d @./iris-input.json

If you do not have DNS, you can still curl with the ingress gateway external IP using the HOST Header.

SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict" -d @./iris-input.json

If you are calling from in cluster you can curl with the internal url with host {{ InferenceServiceName }}.

curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test/v1/models/sklearn-iris:predict -d @./iris-input.json

If you want to use InferenceClient to perform the inference, you can follow the below example

from kserve import RESTConfig, InferenceRESTClient

config = RESTConfig(protocol="v1", retries=5, timeout=30)
client = InferenceRESTClient(config)
base_url = "http://sklearn-iris.kserve-test"
data = {"instances": [[6.8,  2.8,  4.8,  1.4], [6.0,  3.4,  4.5,  1.6]]}
model_name = "sklearn-iris"
result = await client.infer(base_url, data, model_name=model_name)
print(result)

You should see two predictions returned (i.e. {"predictions": [1, 1]}). Both sets of data points sent for inference correspond to the flower with index 1. In this case, the model predicts that both flowers are "Iris Versicolour".

6. Run performance test (optional)

If you want to load test the deployed model, try deploying the following Kubernetes Job to drive load to the model:

# use kubectl create instead of apply because the job template is using generateName which doesn't work with kubectl apply
kubectl create -f https://raw.githubusercontent.com/kserve/kserve/release-0.11/docs/samples/v1beta1/sklearn/v1/perf.yaml -n kserve-test

Execute the following command to view output:

kubectl logs load-test8b58n-rgfxr -n kserve-test

Expected Output

Requests      [total, rate, throughput]         30000, 500.02, 499.99
Duration      [total, attack, wait]             1m0s, 59.998s, 3.336ms
Latencies     [min, mean, 50, 90, 95, 99, max]  1.743ms, 2.748ms, 2.494ms, 3.363ms, 4.091ms, 7.749ms, 46.354ms
Bytes In      [total, mean]                     690000, 23.00
Bytes Out     [total, mean]                     2460000, 82.00
Success       [ratio]                           100.00%
Status Codes  [code:count]                      200:30000
Error Set:
Back to top