Deploy Custom Python Serving Runtime with InferenceService¶
When the out-of-the-box Serving Runtime
does not fit your need, you can choose to build your own model server using KServe ModelServer API
to deploy as Custom Serving Runtime
on KServe.
Create and Deploy Custom REST ServingRuntime¶
Setup¶
- Install pack CLI to build your custom model server image.
- The code samples can be found in the KServe website repository.
Implement Custom Model using KServe API¶
KServe.Model
base class mainly defines three handlers preprocess
, predict
and postprocess
, these handlers are executed
in sequence, the output of the preprocess
is passed to predict
as the input, the predictor
handler executes the
inference for your model, the postprocess
handler then turns the raw prediction result into user-friendly inference response. There
is an additional load
handler which is used for writing custom code to load your model into the memory from local file system or
remote model storage, a general good practice is to call the load
handler in the model server class __init__
function, so your model
is loaded on startup and ready to serve prediction requests.
import argparse
import base64
import io
import time
from fastapi.middleware.cors import CORSMiddleware
from torchvision import models, transforms
from typing import Dict
import torch
from PIL import Image
import kserve
from kserve import Model, ModelServer, logging
from kserve.model_server import app
from kserve.utils.utils import generate_uuid
class AlexNetModel(Model):
def __init__(self, name: str):
super().__init__(name, return_response_headers=True)
super().__init__(name, return_response_headers=True)
self.name = name
super().__init__(name, return_response_headers=True)
self.name = name
self.load()
self.ready = False
def load(self):
self.model = models.alexnet(pretrained=True)
self.model.eval()
# The ready flag is used by model ready endpoint for readiness probes,
# set to True when model is loaded successfully without exceptions.
self.ready = True
async def predict(
self,
payload: Dict,
headers: Dict[str, str] = None,
response_headers: Dict[str, str] = None,
) -> Dict:
start = time.time()
# Input follows the Tensorflow V1 HTTP API for binary values
# https://www.tensorflow.org/tfx/serving/api_rest#encoding_binary_values
img_data = payload["instances"][0]["image"]["b64"]
raw_img_data = base64.b64decode(img_data)
input_image = Image.open(io.BytesIO(raw_img_data))
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image).unsqueeze(0)
output = self.model(input_tensor)
torch.nn.functional.softmax(output, dim=1)
values, top_5 = torch.topk(output, 5)
result = values.flatten().tolist()
end = time.time()
response_id = generate_uuid()
# Custom response headers can be added to the inference response
if response_headers is not None:
response_headers.update(
{"prediction-time-latency": f"{round((end - start) * 1000, 9)}"}
)
return {"predictions": result}
parser = argparse.ArgumentParser(parents=[kserve.model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
# Configure kserve and uvicorn logger
if args.configure_logging:
logging.configure_logging(args.log_config_file)
model = AlexNetModel(args.model_name)
model.load()
# Custom middlewares can be added to the model
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
ModelServer().start([model])
Note
return_response_headers=True
can be added to return response headers for v1 and v2 endpoints
Build Custom Serving Image with BuildPacks¶
Buildpacks allows you to transform your inference code into images that can be deployed on KServe without
needing to define the Dockerfile
. Buildpacks automatically determines the python application and then install the dependencies from the
requirements.txt
file, it looks at the Procfile
to determine how to start the model server. Here we are showing how to build the serving
image manually with pack
, you can also choose to use kpack
to run the image build on the cloud and continuously build/deploy new versions from your source git repository.
You can use pack cli to build and push the custom model server image
pack build --builder=heroku/builder:24 ${DOCKER_USER}/custom-model:v1
docker push ${DOCKER_USER}/custom-model:v1
Tip
If your buildpack command fails, make sure you have a .python-version
file with the correct python version specified and a Procfile
with correct entrypoint and arguments.
Deploy Locally and Test¶
Launch the docker image built from last step.
docker run -ePORT=8080 -p8080:8080 ${DOCKER_USER}/custom-model:v1
Send a test inference request locally with input.json
curl -H "Content-Type: application/json" localhost:8080/v1/models/custom-model:predict -d @./input.json
Expected Output
{"predictions": [[14.861763000488281, 13.94291877746582, 13.924378395080566, 12.182709693908691, 12.00634765625]]}
Deploy the REST Custom Serving Runtime on KServe¶
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: custom-model
spec:
predictor:
containers:
- name: kserve-container
image: ${DOCKER_USER}/custom-model:v1
custom.yaml
file edit the container image and replace ${DOCKER_USER} with your Docker Hub username.
Arguments¶
You can supply additional command arguments on the container spec to configure the model server.
--workers
: Spawn the specified number ofuvicorn
workers(multi-processing) of the model server, the default value is 1, this option is often used to help increase the resource utilization of the container.--http_port
: The http port model server is listening on, the default REST port is 8080.--grpc_port
: The GRPC Port listened to by the model server. Default is 8081.--max_threads
: The max number of gRPC processing threads. Default is 4.--enable_grpc
: Enable gRPC for the model server. Default is true.--grpc_max_send_message_length
: The max message length for gRPC send message. Default is 8388608 bytes (8 MB).--grpc_max_receive_message_length
: The max message length for gRPC receive message. Default is 8388608 bytes (8 MB).--model_name
: The model name deployed in the model server, the default name the same as the service name.--max_asyncio_workers
: Max number of workers to spawn for python async io loop, by default it ismin(32,cpu.limit + 4)
.--enable_latency_logging
: Whether to log latency metrics per request, the default is True.--configure_logging
: Whether to configure KServe and Uvicorn logging, the default is True.--log_config_file
: The path of the Python config file configuration to use (can be a json, a yaml file or any other supported file format by python logging module). This file allows to override the default Uvicorn configuration shipped with KServe. The default is None.--access_log_format
: A string representing the access log format configuration to use. The functionality is provided by theasgi-logger
library and it allows to override only theuvicorn.access
's format configuration with a richer set of fields (output hardcoded tostdout
). This limitation is currently due to the ASGI specs that don't describe how access logging should be implemented in detail (please refer to this Uvicorn github issue for more info). By default is None.enable_latency_logging
: whether to log latency metrics per request, the default is True.--enable_docs_url
: Enable docs url '/docs' to display Swagger UI.
Environment Variables¶
You can supply additional environment variables on the container spec.
STORAGE_URI
: load a model from a storage system supported by KServe e.g.pvc://
s3://
. This acts the same asstorageUri
when using a built-in predictor. The data will be available at/mnt/models
in the container. For example, the followingSTORAGE_URI: "pvc://my_model/model.onnx"
will be accessible at/mnt/models/model.onnx
PROTOCOL
: specify the protocol version supported by the model e.gV1
. This acts the same asprotocolVersion
when using a built-in predictor.KSERVE_LOGLEVEL
: sets thekserve
andkserve_trace
's logger verbosity. Default isINFO
.
Apply the YAML to deploy the InferenceService on KServe
kubectl apply -f custom.yaml
Expected Output
$ inferenceservice.serving.kserve.io/custom-model created
Run a Prediction¶
The first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
MODEL_NAME=custom-model
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice ${MODEL_NAME} -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/${MODEL_NAME}:predict -d $INPUT_PATH
Expected Output
* Trying 169.47.250.204...
* TCP_NODELAY set
* Connected to 169.47.250.204 (169.47.250.204) port 80 (#0)
> POST /v1/models/custom-model:predict HTTP/1.1
> Host: custom-model.default.example.com
> User-Agent: curl/7.64.1
> Accept: */*
> Content-Length: 105339
> Content-Type: application/x-www-form-urlencoded
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< content-length: 232
< content-type: text/html; charset=UTF-8
< date: Wed, 26 Feb 2020 15:19:15 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 213
<
* Connection #0 to host 169.47.250.204 left intact
{"predictions": [[14.861762046813965, 13.942917823791504, 13.9243803024292, 12.182711601257324, 12.00634765625]]}
Delete the InferenceService¶
kubectl delete -f custom.yaml
Create and Deploy Custom gRPC ServingRuntime¶
KServe gRPC ServingRuntimes enables high performance inference data plane which implements the Open(v2) Inference Protocol
:
- gRPC is built on top of HTTP/2 for addressing the shortcomings of head-of-line-blocking and pipelining,
- gRPC transports binary data format with Protobuf which is efficient to send over the wire.
Compared to REST it has limited support for browser and the message is not human-readable which requires additional debugging tools.
Setup¶
- Install pack CLI to build your custom model server image.
- The code samples can be found in the KServe website repository.
Implement Custom Model using KServe API¶
For Open(v2) Inference Protocol
, KServe provides InferRequest
and InferResponse
API object for predict
, preprocess
, postprocess
handlers to abstract away the implementation details of REST/gRPC decoding and encoding over the wire.
import argparse
import io
from typing import Dict
import torch
from PIL import Image
from torchvision import models, transforms
from kserve import InferRequest, InferResponse, Model, ModelServer, logging, model_server
from kserve.utils.utils import get_predict_response
# This custom predictor example implements the custom model following KServe
# v2 inference gPPC protocol, the input can be raw image bytes or image tensor
# which is pre-processed by transformer and then passed to predictor, the
# output is the prediction response.
class AlexNetModel(Model):
def __init__(self, name: str):
super().__init__(name)
self.load()
self.ready = False
def load(self):
self.model = models.alexnet(pretrained=True)
self.model.eval()
# The ready flag is used by model ready endpoint for readiness probes,
# set to True when model is loaded successfully without exceptions.
self.ready = True
async def predict(
self, payload: InferRequest,
headers: Dict[str, str] = None,
response_headers: Dict[str, str] = None,
) -> InferResponse:
req = payload.inputs[0]
if req.datatype == "BYTES":
input_image = Image.open(io.BytesIO(req.data[0]))
preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
input_tensor = preprocess(input_image)
input_tensor = input_tensor.unsqueeze(0)
elif req.datatype == "FP32":
np_array = payload.inputs[0].as_numpy()
input_tensor = torch.Tensor(np_array)
output = self.model(input_tensor)
torch.nn.functional.softmax(output, dim=1)
values, top_5 = torch.topk(output, 5)
result = values.detach().numpy()
return get_predict_response(payload, result, self.name)
parser = argparse.ArgumentParser(parents=[model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
# Configure kserve and uvicorn logger
if args.configure_logging:
logging.configure_logging(args.log_config_file)
model = AlexNetModel(args.model_name)
model.load()
ModelServer().start([model])
Build Custom Serving Image with BuildPacks¶
Similar to building the REST custom image, you can also use pack cli to build and push the custom gRPC model server image
pack build --builder=heroku/builder:24 ${DOCKER_USER}/custom-model-grpc:v1
docker push ${DOCKER_USER}/custom-model-grpc:v1
Tip
If your buildpack command fails, make sure you have a .python-version
file with the correct python version specified and a Procfile
with correct entrypoint and arguments.
Deploy Locally and Test¶
Launch the docker image built from last step with buildpack
.
docker run -ePORT=8081 -p8081:8081 ${DOCKER_USER}/custom-model-grpc:v1
Send a test inference request locally using InferenceServerClient
grpc_client.py
import asyncio
import json
import base64
import os
from kserve import InferRequest, InferInput
from kserve.inference_client import InferenceGRPCClient
async def main():
client = InferenceGRPCClient(
url=os.environ.get("INGRESS_HOST", "localhost") + ":" + os.environ.get("INGRESS_PORT", "8081"),
channel_args=[('grpc.ssl_target_name_override', os.environ.get("SERVICE_HOSTNAME", ""))]
)
with open("../input.json") as json_file:
data = json.load(json_file)
infer_input = InferInput(name="input-0", shape=[1], datatype="BYTES",
data=[base64.b64decode(data["instances"][0]["image"]["b64"])])
request = InferRequest(infer_inputs=[infer_input], model_name=os.environ.get("MODEL_NAME", "custom-model"))
res = await client.infer(infer_request=request)
print(res)
asyncio.run(main())
python grpc_client.py
Expected Output
"id": "b6a08abf-dcec-42ae-81af-084d9cad1c16","model_name": "custom-model","outputs": ["name": "output-0","shape": [1, 5],"datatype": "FP32","data": [14.975618362426758, 14.036808967590332, 13.966032028198242, 12.252279281616211, 12.086268424987793],"parameters": {}],"parameters": {},"from_grpc": True
Deploy the gRPC Custom Serving Runtime on KServe¶
Create the InferenceService yaml and expose the gRPC port by specifying on ports
section, currently only one port is allowed to expose and by default HTTP port is exposed.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: custom-model-grpc
spec:
predictor:
containers:
- name: kserve-container
image: ${DOCKER_USER}/custom-model-grpc:v1
ports:
- name: h2c
containerPort: 8081
protocol: TCP
custom_grpc.yaml
file edit the container image and replace ${DOCKER_USER} with your Docker Hub username.
Arguments¶
You can supply additional command arguments on the container spec to configure the model server.
--grpc_port
: the http port model server is listening on, the default gRPC port is 8081.--model_name
: the model name deployed in the model server, the default name the same as the service name.
Apply the yaml to deploy the InferenceService on KServe
kubectl apply -f custom_grpc.yaml
Expected Output
$ inferenceservice.serving.kserve.io/custom-model-grpc created
Run a gRPC Prediction¶
The first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
MODEL_NAME=custom-model
SERVICE_HOSTNAME=$(kubectl get inferenceservice custom-model-grpc -o jsonpath='{.status.url}' | cut -d "/" -f 3)
Send an inference request to the gRPC service using InferenceServerClient
grpc_client.py.
python grpc_client.py
Expected Output
"id": "b6a08abf-dcec-42ae-81af-084d9cad1c16","model_name": "custom-model","outputs": ["name": "output-0","shape": [1, 5],"datatype": "FP32","data": [14.975618362426758, 14.036808967590332, 13.966032028198242, 12.252279281616211, 12.086268424987793],"parameters": {}],"parameters": {},"from_grpc": True
Parallel Model Inference¶
By default, the models are loaded in the same process and inference is executed in the same process as the HTTP or gRPC server, if you are hosting multiple models the inference can only be run for one model at a time which limits the concurrency when you share the container for the models. KServe integrates RayServe which provides a programmable API to deploy models as separate python workers so, the inference can be performed in parallel when serving multiple custom models.
Setup¶
- Install pack CLI to build your custom model server image.
- The code samples can be found in the KServe website repository.
import argparse
import base64
import io
from typing import Dict
from torchvision import models, transforms
import torch
from PIL import Image
from ray import serve
from kserve import Model, ModelServer, logging, model_server
from kserve.ray import RayModel
# the model handle name should match the model endpoint name
@serve.deployment(name="custom-model", num_replicas=1)
class AlexNetModel(Model):
def __init__(self, name):
super().__init__(name)
self.ready = False
self.load()
def load(self):
self.model = models.alexnet(pretrained=True, progress=False)
self.model.eval()
# The ready flag is used by model ready endpoint for readiness probes,
# set to True when model is loaded successfully without exceptions.
self.ready = True
async def predict(self, payload: Dict, headers: Dict[str, str] = None) -> Dict:
inputs = payload["instances"]
# Input follows the Tensorflow V1 HTTP API for binary values
# https://www.tensorflow.org/tfx/serving/api_rest#encoding_binary_values
data = inputs[0]["image"]["b64"]
raw_img_data = base64.b64decode(data)
input_image = Image.open(io.BytesIO(raw_img_data))
preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
output = self.model(input_batch)
torch.nn.functional.softmax(output, dim=1)
values, top_5 = torch.topk(output, 5)
return {"predictions": values.tolist()}
parser = argparse.ArgumentParser(parents=[model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
# Configure kserve and uvicorn logger
if args.configure_logging:
logging.configure_logging(args.log_config_file)
app = AlexNetModel.bind(name=args.model_name)
handle = serve.run(app)
model = RayModel(name=args.model_name, handle=handle)
model.load()
ModelServer().start([model])
Fractional GPU example¶
import argparse
import base64
import io
from typing import Dict
from torchvision import models, transforms
import torch
from PIL import Image
import ray
from ray import serve
from kserve import Model, ModelServer, logging, model_server
from kserve.ray import RayModel
# the model handle name should match the model endpoint name
@serve.deployment(name="custom-model", num_replicas=1, ray_actor_options={"num_cpus":1, "num_gpus": 0.5})
class AlexNetModel(Model):
def __init__(self, name):
super().__init__(name)
self.ready = False
self.load()
def load(self):
self.model = models.alexnet(pretrained=True, progress=False)
self.model.eval()
# The ready flag is used by model ready endpoint for readiness probes,
# set to True when model is loaded successfully without exceptions.
self.ready = True
async def predict(self, payload: Dict, headers: Dict[str, str] = None) -> Dict:
inputs = payload["instances"]
# Input follows the Tensorflow V1 HTTP API for binary values
# https://www.tensorflow.org/tfx/serving/api_rest#encoding_binary_values
data = inputs[0]["image"]["b64"]
raw_img_data = base64.b64decode(data)
input_image = Image.open(io.BytesIO(raw_img_data))
preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
output = self.model(input_batch)
torch.nn.functional.softmax(output, dim=1)
values, top_5 = torch.topk(output, 5)
return {"predictions": values.tolist()}
parser = argparse.ArgumentParser(parents=[model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
# Configure kserve and uvicorn logger
if args.configure_logging:
logging.configure_logging(args.log_config_file)
ray.init(num_cpus=2, num_gpus=1)
app = AlexNetModel.bind(name=args.model_name)
handle = serve.run(app)
model = RayModel(name=args.model_name, handle=handle)
model.load()
ModelServer().start([model])
Build Custom Serving Image with BuildPacks¶
You can use pack cli to build the serving image which launches each model as separate python worker and web server routes to the model workers by name.
pack build --builder=heroku/builder:24 ${DOCKER_USER}/custom-model-ray:v1
docker push ${DOCKER_USER}/custom-model-ray:v1
Tip
If your buildpack command fails, make sure you have a .python-version
file with the correct python version specified and a Procfile
with correct entrypoint and arguments.
Deploy Locally and Test¶
Launch the docker image built from last step.
docker run -ePORT=8080 -p8080:8080 ${DOCKER_USER}/custom-model-ray:v1
Send a test inference request locally with input.json
curl -H "Content-Type: application/json" localhost:8080/v1/models/custom-model:predict -d @./input.json
Expected Output
{"predictions": [[14.861763000488281, 13.94291877746582, 13.924378395080566, 12.182709693908691, 12.00634765625]]}
Configuring Logger for Custom Serving Runtime¶
KServe allows users to override the default logger configuration of serving runtime and uvicorn server. The logger configuration can be modified in one of the following ways:
1. Providing logger configuration as a Dict:¶
If you are building a custom serving runtime and want to modify the logger configuration, this method offers the easiest solution.
You can supply the logging configuration as a Python Dictionary to the kserve.logging.configure_logging()
method. If the logging dictionary is not provided, KServe uses the default configuration KSERVE_LOG_CONFIG.
import argparse
import kserve
from kserve import logging
#################################
# Source code #
################################
parser = argparse.ArgumentParser(parents=[kserve.model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
# Example Dict config
dictConfig = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"kserve": {
"()": "logging.Formatter",
"fmt": "%(asctime)s.%(msecs)03d %(filename)s:%(funcName)s():%(lineno)s %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S",
},
"kserve_trace": {
"()": "logging.Formatter",
"fmt": "%(asctime)s.%(msecs)03d %(name)s %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S",
},
"uvicorn": {
"()": "uvicorn.logging.DefaultFormatter",
"datefmt": "%Y-%m-%d %H:%M:%S",
"fmt": "%(asctime)s.%(msecs)03d %(name)s %(levelprefix)s %(message)s",
"use_colors": None,
},
},
"handlers": {
"kserve": {
"formatter": "kserve",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"kserve_trace": {
"formatter": "kserve_trace",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"uvicorn": {
"formatter": "uvicorn",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
},
"loggers": {
"kserve": {
"handlers": ["kserve"],
"level": "INFO",
"propagate": False,
},
"kserve.trace": {
"handlers": ["kserve_trace"],
"level": "INFO",
"propagate": False,
},
"uvicorn": {"handlers": ["uvicorn"], "level": "INFO", "propagate": False},
},
}
if args.configure_logging:
logging.configure_logging(dictConfig)
Note
The logger should be configured before doing any actual work. A recommended best practice is to configure the logger in the main, preferably as the first line of code. If the logger is configured later on in the source code, it may lead to inconsistent logger formats.
2. Providing logger configuration as a file:¶
The logger configuration can be provided as a file. If the filename ends with .json
, KServe will treat the file as JSON Configuration.
If the filename ends with .yaml
or .yml
, KServe will treat the file as YAML Configuration. Otherwise, The file will be treated
as a configuration file in the format specified in the Python logging module documentation.
This offers a more flexible way of configuring the logger for pre-built serving runtimes.
The model server offers a command line argument which accepts a file path pointing to the configuration. For example,
sklearnserver --log_config_file=/path/to/config.yaml
import argparse
from kserve import logging
import kserve
#################################
# Source code #
################################
parser = argparse.ArgumentParser(parents=[kserve.model_server.parser])
args, _ = parser.parse_known_args()
if __name__ == "__main__":
if args.configure_logging:
logging.configure_logging(args.log_config_file)
JSON
format.
{
"version": 1,
"disable_existing_loggers": false,
"formatters": {
"kserve": {
"()": "logging.Formatter",
"fmt": "%(asctime)s.%(msecs)03d %(filename)s:%(funcName)s():%(lineno)s %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S"
},
"kserve_trace": {
"()": "logging.Formatter",
"fmt": "%(asctime)s.%(msecs)03d %(name)s %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S"
},
"uvicorn": {
"()": "uvicorn.logging.DefaultFormatter",
"datefmt": "%Y-%m-%d %H:%M:%S",
"fmt": "%(asctime)s.%(msecs)03d %(name)s %(levelprefix)s %(message)s",
"use_colors": null
}
},
"handlers": {
"kserve": {
"formatter": "kserve",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr"
},
"kserve_trace": {
"formatter": "kserve_trace",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr"
},
"uvicorn": {
"formatter": "uvicorn",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr"
}
},
"loggers": {
"kserve": {
"handlers": [
"kserve"
],
"level": "INFO",
"propagate": false
},
"kserve.trace": {
"handlers": [
"kserve_trace"
],
"level": "INFO",
"propagate": false
},
"uvicorn": {
"handlers": [
"uvicorn"
],
"level": "INFO",
"propagate": false
}
}
}
Here is an example using YAML
format for configuring logger.
version: 1
disable_existing_loggers: false
formatters:
kserve:
"()": logging.Formatter
fmt: "%(asctime)s.%(msecs)03d %(filename)s:%(funcName)s():%(lineno)s %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"
kserve_trace:
"()": logging.Formatter
fmt: "%(asctime)s.%(msecs)03d %(name)s %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"
uvicorn:
"()": uvicorn.logging.DefaultFormatter
datefmt: "%Y-%m-%d %H:%M:%S"
fmt: "%(asctime)s.%(msecs)03d %(name)s %(levelprefix)s %(message)s"
use_colors: null
handlers:
kserve:
formatter: kserve
class: logging.StreamHandler
stream: ext://sys.stderr
kserve_trace:
formatter: kserve_trace
class: logging.StreamHandler
stream: ext://sys.stderr
uvicorn:
formatter: uvicorn
class: logging.StreamHandler
stream: ext://sys.stderr
loggers:
kserve:
handlers:
- kserve
level: INFO
propagate: false
kserve.trace:
handlers:
- kserve_trace
level: INFO
propagate: false
uvicorn:
handlers:
- uvicorn
level: INFO
propagate: false
3. Disabling logger Configuration:¶
If you don't want Kserve to configure the logger then, You can disable it by passing the commandline argument --configure_logging=False
to the model server. The command line argument --log_config_file
will be ignored, if the logger configuration is disabled.
In this case, the logger will inherit the root logger's configuration.
sklearnserver --configure_logging=False
Note
If the logger is not configured at the entrypoint in the serving runtime (i.e. logging.configure_logger() is not invoked), The model server will configure the logger using default configuration. But note that the logger is configured at model server initialization. So any logs before the initialization will use the root logger's configuration.