Skip to content

Deploy InferenceService with saved model on Azure

Using Public Azure Blobs

By default, KServe uses anonymous client to download artifacts. To point to an Azure Blob, specify StorageUri to point to an Azure Blob Storage with the format: https://{$STORAGE_ACCOUNT_NAME}.blob.core.windows.net/{$CONTAINER}/{$PATH}

e.g. https://modelstoreaccount.blob.core.windows.net/model-store/model.joblib

Using Private Blobs

KServe supports authenticating using an Azure Service Principle.

Create an authorized Azure Service Principle

  • To create an Azure Service Principle follow the steps here.
  • Assign the SP the Storage Blob Data Owner role on your blob (KServe needs this permission as it needs to list contents at the blob path to filter items to download).
  • Details on assigning storage roles here.
az ad sp create-for-rbac --name model-store-sp --role "Storage Blob Data Owner" \
    --scopes /subscriptions/2662a931-80ae-46f4-adc7-869c1f2bcabf/resourceGroups/cognitive/providers/Microsoft.Storage/storageAccounts/modelstoreaccount

Create Azure Secret and attach to Service Account

Create Azure secret

apiVersion: v1
kind: Secret
metadata:
  name: azcreds
type: Opaque
stringData: # use `stringData` for raw credential string or `data` for base64 encoded string
  AZ_CLIENT_ID: xxxxx
  AZ_CLIENT_SECRET: xxxxx
  AZ_SUBSCRIPTION_ID: xxxxx
  AZ_TENANT_ID: xxxxx

Attach secret to a service account

apiVersion: v1
kind: ServiceAccount
metadata:
  name: sa
secrets:
- name: azcreds
kubectl apply -f create-azure-secret.yaml

Deploy the model on Azure with InferenceService

Create the InferenceService with the azure storageUri and the service account with azure credential attached.

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-azure"
spec:
  predictor:
    serviceAccountName: sa
    sklearn:
      storageUri: "https://modelstoreaccount.blob.core.windows.net/model-store/model.joblib"
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-azure"
spec:
  predictor:
    serviceAccountName: sa
    model:
      modelFormat:
        name: sklearn
      storageUri: "https://modelstoreaccount.blob.core.windows.net/model-store/model.joblib"

Apply the sklearn-azure.yaml.

kubectl apply -f sklearn-azure.yaml

Run a prediction

Now, the ingress can be accessed at ${INGRESS_HOST}:${INGRESS_PORT} or follow this instruction to find out the ingress IP and port.

SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-azure -o jsonpath='{.status.url}' | cut -d "/" -f 3)

MODEL_NAME=sklearn-azure
INPUT_PATH=@./input.json
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH

Expected Output

*   Trying 127.0.0.1:8080...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /v1/models/sklearn-azure:predict HTTP/1.1
> Host: sklearn-azure.default.example.com
> User-Agent: curl/7.68.0
> Accept: */*
> Content-Length: 84
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 84 out of 84 bytes
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 23
< content-type: application/json; charset=UTF-8
< date: Mon, 20 Sep 2021 04:55:50 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 6
<
* Connection #0 to host localhost left intact
{"predictions": [1, 1]}
Back to top