Skip to main content

Debugging Guide

Debug KServe InferenceService Status

You deployed an InferenceService to KServe, but it is not in ready state. Go through this step-by-step guide to understand what failed.

kubectl get inferenceservices sklearn-iris 
NAME URL READY DEFAULT TRAFFIC CANARY TRAFFIC AGE
model-example False 1m

IngressNotConfigured

If you see IngressNotConfigured error, this indicates Istio Ingress Gateway probes are failing.

kubectl get ksvc
NAME URL LATESTCREATED LATESTREADY READY REASON
sklearn-iris-predictor-default http://sklearn-iris-predictor-default.default.example.com sklearn-iris-predictor-default-jk794 mnist-sample-predictor-default-jk794 Unknown IngressNotConfigured

You can then check Knative networking-istio pod logs for more details.

kubectl logs -l app=networking-istio -n knative-serving

If you are seeing HTTP 403, then you may have Istio RBAC turned on which blocks the probes to your service.

{"level":"error","ts":"2020-03-26T19:12:00.749Z","logger":"istiocontroller.ingress-controller.status-manager","caller":"ingress/status.go:366",
"msg":"Probing of http://flowers-sample-predictor-default.kubeflow-jeanarmel-luce.example.com:80/ failed, IP: 10.0.0.29:80, ready: false, error: unexpected status code: want [200], got 403 (depth: 0)",
"commit":"6b0e5c6","knative.dev/controller":"ingress-controller","stacktrace":"knative.dev/serving/pkg/reconciler/ingress.(*StatusProber).processWorkItem\n\t/home/prow/go/src/knative.dev/serving/pkg/reconciler/ingress/status.go:366\nknative.dev/serving/pkg/reconciler/ingress.(*StatusProber).Start.func1\n\t/home/prow/go/src/knative.dev/serving/pkg/reconciler/ingress/status.go:268"}

RevisionMissing Error

If you see RevisionMissing error, then your service pods are not in ready state. Knative Service creates Knative Revision which represents a snapshot of the InferenceService code and configuration.

Storage Initializer Fails to Download Model

kubectl get revision $(kubectl get configuration sklearn-iris-predictor-default --output jsonpath="{.status.latestCreatedRevisionName}") 
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
sklearn-iris-predictor-default-csjpw sklearn-iris-predictor-default sklearn-iris-predictor-default-csjpw 2 Unknown Deploying

If you see READY status in Unknown error, this usually indicates that the KServe Storage Initializer init container fails to download the model. You can check the init container logs to see why it fails. Note that the pod scales down after some time if the init container fails.

kubectl get pod -l serving.kserve.io/inferenceservice=sklearn-iris
NAME READY STATUS RESTARTS AGE
sklearn-iris-predictor-default-29jks-deployment-5f7d4b9996hzrnc 0/3 Init:Error 1 10s

kubectl logs -l model=sklearn-iris -c storage-initializer
[I 200517 03:56:19 initializer-entrypoint:13] Initializing, args: src_uri [gs://kfserving-examples/models/sklearn/iris-1] dest_path[ [/mnt/models]
[I 200517 03:56:19 storage:35] Copying contents of gs://kfserving-examples/models/sklearn/iris-1 to local
Traceback (most recent call last):
File "/storage-initializer/scripts/initializer-entrypoint", line 14, in <module>
kserve.Storage.download(src_uri, dest_path)
File "/usr/local/lib/python3.7/site-packages/kfserving/storage.py", line 48, in download
Storage._download_gcs(uri, out_dir)
File "/usr/local/lib/python3.7/site-packages/kfserving/storage.py", line 116, in _download_gcs
The path or model %s does not exist." % (uri))
RuntimeError: Failed to fetch model. The path or model gs://kfserving-examples/models/sklearn/iris-1 does not exist.
[I 200517 03:40:19 initializer-entrypoint:13] Initializing, args: src_uri [gs://kfserving-examples/models/sklearn/iris] dest_path[ [/mnt/models]
[I 200517 03:40:19 storage:35] Copying contents of gs://kfserving-examples/models/sklearn/iris to local
[I 200517 03:40:20 storage:111] Downloading: /mnt/models/model.joblib
[I 200517 03:40:20 storage:60] Successfully copied gs://kfserving-examples/models/sklearn/iris to /mnt/models

Inference Service in OOM Status

If you see ExitCode137 from the revision status, this means the revision has failed, and this usually happens when the inference service pod is out of memory. To address it, you might need to increase the memory limit of the InferenceService.

kubectl get revision $(kubectl get configuration sklearn-iris-predictor-default --output jsonpath="{.status.latestCreatedRevisionName}") 
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
sklearn-iris-predictor-default-84bzf sklearn-iris-predictor-default sklearn-iris-predictor-default-84bzf 8 False ExitCode137s

Inference Service Fails to Start

If you see other exit codes from the revision status, you can further check the pod status.

kubectl get pods -l serving.kserve.io/inferenceservice=sklearn-iris
sklearn-iris-predictor-default-rvhmk-deployment-867c6444647tz7n 1/3 CrashLoopBackOff 3 80s

If you see the CrashLoopBackOff, then check the kserve-container log to see more details about where it fails. The error log is usually propagated on revision container status as well.

kubectl logs sklearn-iris-predictor-default-rvhmk-deployment-867c6444647tz7n kserve-container
[I 200517 04:58:21 storage:35] Copying contents of /mnt/models to local
Traceback (most recent call last):
File "/usr/local/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/local/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/sklearnserver/sklearnserver/__main__.py", line 33, in <module>
model.load()
File "/sklearnserver/sklearnserver/model.py", line 36, in load
model_file = next(path for path in paths if os.path.exists(path))
StopIteration

Inference Service Cannot Fetch Docker Images from AWS ECR

If you don't see the inference service created at all for custom images from private registries (such as AWS ECR), the Knative Serving Controller might be failing to authenticate itself against the registry.

failed to resolve image to digest: failed to fetch image information: unsupported status code 401; body: Not Authorized

You can verify that this is actually the case by spinning up a pod that uses your image. The pod should be able to fetch it if the correct IAM roles are attached, while Knative is not able to. To work around this issue, you can either skip tag resolution or provide certificates for your registry as detailed in the official Knative docs.

kubectl -n knative-serving edit configmap config-deployment

The resulting yaml will look something like this:

apiVersion: v1
kind: ConfigMap
metadata:
name: config-deployment
namespace: knative-serving
data:
# List of repositories for which tag to digest resolving should be skipped (for AWS ECR: {account_id}.dkr.ecr.{region}.amazonaws.com)
registriesSkippingTagResolving: registry.example.com

Debug KServe Request Flow

  +----------------------+        +-----------------------+      +--------------------------+
|Istio Virtual Service | |Istio Virtual Service | | K8S Service |
| | | | | |
|sklearn-iris | |sklearn-iris-predictor | | sklearn-iris-predictor |
| +------->|-default +----->| -default-$revision |
| | | | | |
|KServe Route | |Knative Route | | Knative Revision Service |
+----------------------+ +-----------------------+ +------------+-------------+
Knative Ingress Gateway Knative Local Gateway Kube Proxy
(Istio gateway) (Istio gateway) |
|
|
+-------------------------------------------------------+ |
| Knative Revision Pod | |
| | |
| +-------------------+ +-----------------+ | |
| | | | | | |
| |kserve-container |<-----+ Queue Proxy | |<------------------+
| | | | | |
| +-------------------+ +--------------^--+ |
| | |
+-----------------------^-------------------------------+
| scale deployment |
+--------+--------+ | pull metrics
| Knative | |
| Autoscaler |-----------
| KPA/HPA |
+-----------------+

1. Traffic Arrives Through Knative Ingress/Local Gateway for External/Internal Traffic

Istio Gateway resource describes the edge of the mesh receiving incoming or outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed and the type of protocol to use. If you are using Standalone mode, it installs the Gateway in knative-serving namespace, if you are using Kubeflow KServe (KServe installed with Kubeflow), it installs the Gateway in kubeflow namespace e.g., on GCP the gateway is protected behind IAP with Istio authentication policy.

kubectl get gateway knative-ingress-gateway -n knative-serving -oyaml
kind: Gateway
metadata:
labels:
networking.knative.dev/ingress-provider: istio
serving.knative.dev/release: v0.12.1
name: knative-ingress-gateway
namespace: knative-serving
spec:
selector:
istio: ingressgateway
servers:
- hosts:
- '*'
port:
name: http
number: 80
protocol: HTTP
- hosts:
- '*'
port:
name: https
number: 443
protocol: HTTPS
tls:
mode: SIMPLE
privateKey: /etc/istio/ingressgateway-certs/tls.key
serverCertificate: /etc/istio/ingressgateway-certs/tls.crt

The InferenceService request routes to the Istio Ingress Gateway by matching the host and port from the URL. By default, HTTP is configured, but you can configure HTTPS with TLS certificates.

2. KServe Istio Virtual Service to Route for Predictor, Transformer, Explainer

kubectl get vs sklearn-iris -oyaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: sklearn-iris
namespace: default
gateways:
- knative-serving/knative-local-gateway
- knative-serving/knative-ingress-gateway
hosts:
- sklearn-iris.default.svc.cluster.local
- sklearn-iris.default.example.com
http:
- headers:
request:
set:
Host: sklearn-iris-predictor-default.default.svc.cluster.local
match:
- authority:
regex: ^sklearn-iris\.default(\.svc(\.cluster\.local)?)?(?::\d{1,5})?$
gateways:
- knative-serving/knative-local-gateway
- authority:
regex: ^sklearn-iris\.default\.example\.com(?::\d{1,5})?$
gateways:
- knative-serving/knative-ingress-gateway
route:
- destination:
host: knative-local-gateway.istio-system.svc.cluster.local
port:
number: 80
weight: 100

KServe creates the routing rule which by default routes to Predictor if you only have Predictor specified on InferenceService. When Transformer and Explainer are specified on InferenceService, the routing rule configures the traffic to route to Transformer or Explainer based on the verb. The request then routes to the second level Knative created virtual service via local gateway with the matching host header.

3. Knative Istio Virtual Service to Route the Inference Request to the Latest Ready Revision

kubectl get vs sklearn-iris-predictor-default-ingress -oyaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: sklearn-iris-predictor-default-mesh
namespace: default
spec:
gateways:
- knative-serving/knative-ingress-gateway
- knative-serving/knative-local-gateway
hosts:
- sklearn-iris-predictor-default.default
- sklearn-iris-predictor-default.default.example.com
- sklearn-iris-predictor-default.default.svc
- sklearn-iris-predictor-default.default.svc.cluster.local
http:
- match:
- authority:
prefix: sklearn-iris-predictor-default.default
gateways:
- knative-serving/knative-local-gateway
- authority:
prefix: sklearn-iris-predictor-default.default.svc
gateways:
- knative-serving/knative-local-gateway
- authority:
prefix: sklearn-iris-predictor-default.default
gateways:
- knative-serving/knative-local-gateway
retries: {}
route:
- destination:
host: sklearn-iris-predictor-default-00001.default.svc.cluster.local
port:
number: 80
headers:
request:
set:
Knative-Serving-Namespace: default
Knative-Serving-Revision: sklearn-iris-predictor-default-00001
weight: 100
- match:
- authority:
prefix: sklearn-iris-predictor-default.default.example.com
gateways:
- knative-serving/knative-ingress-gateway
retries: {}
route:
- destination:
host: sklearn-iris-predictor-default-00001.default.svc.cluster.local
port:
number: 80
headers:
request:
set:
Knative-Serving-Namespace: default
Knative-Serving-Revision: sklearn-iris-predictor-default-00001
weight: 100

The destination here is the k8s Service for the latest ready Knative Revision, and it is reconciled by Knative every time a user rolls out a new revision. When a new revision is rolled out and in ready state, the old revision is then scaled down. After the configured revision GC time, the revision resource is garbage collected if the revision no longer has traffic referenced.

4. Kubernetes Service Routes the Requests to the Queue Proxy Sidecar of the Inference Service Pod on Port 8012

kubectl get svc sklearn-iris-predictor-default-fhmjk-private -oyaml
apiVersion: v1
kind: Service
metadata:
name: sklearn-iris-predictor-default-fhmjk-private
namespace: default
spec:
clusterIP: 10.105.186.18
ports:
- name: http
port: 80
protocol: TCP
targetPort: 8012
- name: queue-metrics
port: 9090
protocol: TCP
targetPort: queue-metrics
- name: http-usermetric
port: 9091
protocol: TCP
targetPort: http-usermetric
- name: http-queueadm
port: 8022
protocol: TCP
targetPort: 8022
selector:
serving.knative.dev/revisionUID: a8f1eafc-3c64-4930-9a01-359f3235333a
sessionAffinity: None
type: ClusterIP

5. The Queue Proxy Routes to KServe Container with Max Concurrent Requests Configured with ContainerConcurrency

If the queue proxy has more requests than it can handle, the Knative Autoscaler creates more pods to handle additional requests.

6. Finally, the Queue Proxy Routes Traffic to the KServe Container for Processing the Inference Requests