Deploy Your First Predictive Inference Service
In this tutorial, you will deploy an InferenceService with a predictor that loads a scikit-learn model trained with the iris dataset. This dataset has three output classes: Iris Setosa, Iris Versicolour, and Iris Virginica.
You will then send an inference request to your deployed model to get a prediction for the class of iris plant your request corresponds to.
Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the storage location of the model and it gets some super powers out of the box 🚀.
Prerequisites
Before you begin, ensure you have followed the KServe Quickstart Guide to set up KServe in your Kubernetes cluster. This guide assumes you have a working KServe installation and a Kubernetes cluster ready for deployment.
1. Create a namespace
First, create a namespace to use for deploying KServe resources:
kubectl create namespace kserve-test
2. Create an InferenceService
Create an InferenceService to deploy the Iris model. This model will be served using KServe's Scikit-learn runtime for optimized performance.
::: warning
Do not deploy InferenceServices
in control plane namespaces (i.e. namespaces with control-plane
label). The webhook is configured in a way to skip these namespaces to avoid any privilege escalations. Deploying InferenceServices to these namespaces will result in the storage initializer not being injected into the pod, causing the pod to fail with the error No such file or directory: '/mnt/models'
.
:::
- Apply from stdin
- Yaml
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
namespace: kserve-test
spec:
predictor:
model:
modelFormat:
name: sklearn
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
resources:
requests:
cpu: "100m"
memory: "512Mi"
limits:
cpu: "1"
memory: "1Gi"
EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
namespace: kserve-test
spec:
predictor:
model:
modelFormat:
name: sklearn
storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
resources:
requests:
cpu: "100m"
memory: "512Mi"
limits:
cpu: "1"
memory: "1Gi"
3. Check InferenceService
status
kubectl get inferenceservices sklearn-iris -n kserve-test
NAME URL READY PREV LATEST PREVROLLEDOUTREVISION LATESTREADYREVISION AGE
sklearn-iris http://sklearn-iris.kserve-test.example.com True 100 sklearn-iris-predictor-default-47q2g 7d23h
If your DNS contains example.com please consult your admin for configuring DNS or using custom domain.
4. Determine the ingress IP and ports
Execute the following command to determine if your kubernetes cluster is running in an environment that supports external load balancers
kubectl get svc istio-ingressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
istio-ingressgateway LoadBalancer 172.21.109.129 130.211.10.121 ... 17h
- Load Balancer
- Node Port
- Port Forward
If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.
export INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
If the EXTERNAL-IP value is none (or perpetually pending), your environment does not provide an external load balancer for the ingress gateway. In this case, you can access the gateway using the service's node port.
# GKE
export INGRESS_HOST=worker-node-address
# Minikube
export INGRESS_HOST=$(minikube ip)
# Other environment(On Prem)
export INGRESS_HOST=$(kubectl get po -l istio=ingressgateway -n istio-system -o jsonpath='{.items[0].status.hostIP}')
export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
Alternatively you can do Port Forward
for testing purposes.
INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}')
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE} 8080:80
Open another terminal, and enter the following to perform inference:
export INGRESS_HOST=localhost
export INGRESS_PORT=8080
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict" -d @./iris-input.json
5. Perform inference
First, prepare your inference input request inside a file:
cat <<EOF > "./iris-input.json"
{
"instances": [
[6.8, 2.8, 4.8, 1.4],
[6.0, 3.4, 4.5, 1.6]
]
}
EOF
Depending on your setup, use one of the following commands to curl the InferenceService
:
- Real DNS
- Magic DNS
- From Ingress gateway with HOST Header
- From local cluster gateway
- Inference Python Client
If you have configured the DNS, you can directly curl the InferenceService
with the URL obtained from the status print.
curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test.${CUSTOM_DOMAIN}/v1/models/sklearn-iris:predict -d @./iris-input.json
If you don't want to go through the trouble to get a real domain, you can instead use "magic" dns xip.io. The key is to get the external IP for your cluster.
kubectl get svc istio-ingressgateway --namespace istio-system
Look for the EXTERNAL-IP
column's value(in this case 35.237.217.209)
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
istio-ingressgateway LoadBalancer 10.51.253.94 35.237.217.209
Next step is to setting up the custom domain:
kubectl edit cm config-domain --namespace knative-serving
Now in your editor, change example.com to {{external-ip}}.xip.io (make sure to replace {{external-ip}} with the IP you found earlier).
With the change applied you can now directly curl the URL:
curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test.35.237.217.209.xip.io/v1/models/sklearn-iris:predict -d @./iris-input.json
If you do not have DNS, you can still curl with the ingress gateway external IP using the HOST Header.
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict" -d @./iris-input.json
If you are calling from in cluster you can curl with the internal url with host {{InferenceServiceName}}.{{namespace}}
curl -v -H "Content-Type: application/json" http://sklearn-iris.kserve-test/v1/models/sklearn-iris:predict -d @./iris-input.json
If you want to use InferenceClient to perform the inference, you can follow the below example:
from kserve import RESTConfig, InferenceRESTClient
config = RESTConfig(protocol="v1", retries=5, timeout=30)
client = InferenceRESTClient(config)
base_url = "http://sklearn-iris.kserve-test"
data = {"instances": [[6.8, 2.8, 4.8, 1.4], [6.0, 3.4, 4.5, 1.6]]}
model_name = "sklearn-iris"
result = await client.infer(base_url, data, model_name=model_name)
print(result)
You should see two predictions returned (i.e. {"predictions": [1, 1]}
). Both sets of data points sent for inference correspond to the flower with index 1
. In this case, the model predicts that both flowers are "Iris Versicolour".
6. Run performance test (optional)
If you want to load test the deployed model, try deploying the following Kubernetes Job to drive load to the model:
# use kubectl create instead of apply because the job template is using generateName which doesn't work with kubectl apply
kubectl create -f https://raw.githubusercontent.com/kserve/kserve/release-0.15/docs/samples/v1beta1/sklearn/v1/perf.yaml -n kserve-test
Execute the following command to view output:
kubectl logs load-test8b58n-rgfxr -n kserve-test
Requests [total, rate, throughput] 30000, 500.02, 499.99
Duration [total, attack, wait] 1m0s, 59.998s, 3.336ms
Latencies [min, mean, 50, 90, 95, 99, max] 1.743ms, 2.748ms, 2.494ms, 3.363ms, 4.091ms, 7.749ms, 46.354ms
Bytes In [total, mean] 690000, 23.00
Bytes Out [total, mean] 2460000, 82.00
Success [ratio] 100.00%
Status Codes [code:count] 200:30000
Error Set:
Next Steps
Now that you have successfully deployed your first Predictive InferenceService, you can explore more advanced features of KServe, such as:
- 📖 GenAI InferenceService - Deploy your first Generative AI InferenceService
- 📖 KServe Concepts - Learn about the core concepts of KServe.
- 📖 Supported Frameworks - Explore Supported Frameworks.