Skip to main content

Deploying XGBoost Models with KServe

This guide demonstrates how to deploy XGBoost models using KServe's InferenceService. You'll learn how to serve models through both HTTP/REST and gRPC endpoints using the Open Inference Protocol.

Prerequisites

Before you begin, make sure you have:

  • A Kubernetes cluster with KServe installed.
  • kubectl CLI configured to communicate with your cluster.
  • Basic knowledge of Kubernetes concepts and XGBoost models.

Training a Sample Model

First, train a sample XGBoost model that will be saved as model.bst:

import xgboost as xgb
from sklearn.datasets import load_iris
import os

model_dir = "."
BST_FILE = "model.bst"

iris = load_iris()
y = iris['target']
X = iris['data']
dtrain = xgb.DMatrix(X, label=y)
param = {'max_depth': 6,
'eta': 0.1,
'silent': 1,
'nthread': 4,
'num_class': 10,
'objective': 'multi:softmax'
}
xgb_model = xgb.train(params=param, dtrain=dtrain)
model_file = os.path.join((model_dir), BST_FILE)
xgb_model.save_model(model_file)

Testing the Model Locally

Once you've serialized your model as model.bst, you can use KServe XGBoost Server to spin up a local server for testing.

tip

This local testing step is optional. You can skip to the deployment section below if you prefer.

Using KServe XGBoostServer Locally

Prerequisites

To use KServe XGBoost server locally, install the xgbserver runtime package:

  1. Clone the KServe repository and navigate into the directory:

    git clone https://github.com/kserve/kserve
  2. Install the xgbserver runtime using Uv (ensure you have Uv installed):

    cd python/xgbserver
    uv sync

Serving the Model Locally

The xgbserver package takes three arguments:

  • --model_dir: The directory path where the model is stored
  • --model_name: The name of the model to be deployed (optional, default is model)
  • --nthread: Number of threads to use by XGBoost (optional, default is 1)

Start your server with:

python3 xgbserver --model_dir /path/to/model_dir --model_name xgboost-iris

Deploying the Model with REST Endpoint

To deploy your trained model on Kubernetes with KServe, create an InferenceService resource specifying protocolVersion: v2 to use the Open Inference Protocol:

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "xgboost-iris"
spec:
predictor:
model:
modelFormat:
name: xgboost
protocolVersion: v2
runtime: kserve-xgbserver
storageUri: "gs://kfserving-examples/models/xgboost/iris"
tip

If the runtime field is not provided for V2 protocol, the mlserver runtime is used by default.

note

Note that, by default the v1beta1 version will expose your model through an API compatible with the existing V1 Dataplane.

This deployment assumes:

  • Your model weights (model.bst) have been uploaded to a storage location accessible from your cluster
  • The model file must have any of the following extensions: .bst, .json, .ubj for the XGBoost server to recognize it
  • Your storage URI points to the directory containing the model file
  • The kserve-xgbserver runtime is properly configured in your KServe installation

Apply the YAML manifest:

kubectl apply -f xgboost.yaml

Testing the Deployed Model

You can test your deployed model by sending a sample request that follows the Open Inference Protocol.

Here's an example input payload (iris-input.json):

{
"inputs": [
{
"name": "input-0",
"shape": [2, 4],
"datatype": "FP32",
"data": [
[6.8, 2.8, 4.8, 1.4],
[6.0, 3.4, 4.5, 1.6]
]
}
]
}

First, determine the ingress IP and ports, then set the INGRESS_HOST and INGRESS_PORT environment variables.

Send the inference request:

SERVICE_HOSTNAME=$(kubectl get inferenceservice xgboost-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)

curl -v \
-H "Host: ${SERVICE_HOSTNAME}" \
-H "Content-Type: application/json" \
-d @./iris-input.json \
http://${INGRESS_HOST}:${INGRESS_PORT}/v2/models/xgboost-iris/infer
Expected Output
{
"id": "4e546709-0887-490a-abd6-00cbc4c26cf4",
"model_name": "xgboost-iris",
"model_version": "v1.0.0",
"outputs": [
{
"data": [1.0, 1.0],
"datatype": "FP32",
"name": "predict",
"parameters": null,
"shape": [2]
}
]
}

Deploying the Model with gRPC Endpoint

For applications requiring gRPC communication, you can expose a gRPC endpoint by modifying the InferenceService definition.

tip

KServe currently supports exposing either HTTP or gRPC port, not both simultaneously. By default, the HTTP port is exposed.

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "xgboost-iris-grpc"
spec:
predictor:
model:
modelFormat:
name: xgboost
protocolVersion: v2
runtime: kserve-xgbserver
storageUri: "gs://kfserving-examples/models/xgboost/iris"
ports:
- name: h2c # knative expects grpc port name to be 'h2c'
protocol: TCP
containerPort: 8081

Apply the YAML to create the gRPC InferenceService:

kubectl apply -f xgboost-grpc.yaml

Testing the gRPC Endpoint with grpcurl

First, determine the ingress IP and ports, then set the INGRESS_HOST and INGRESS_PORT environment variables.

After the gRPC InferenceService becomes ready, use grpcurl to send gRPC requests:

# Download the proto file
curl -O https://raw.githubusercontent.com/kserve/open-inference-protocol/main/specification/protocol/open_inference_grpc.proto

INPUT_PATH=iris-input-grpc.json
PROTO_FILE=open_inference_grpc.proto
SERVICE_HOSTNAME=$(kubectl get inferenceservice xgboost-iris-grpc -o jsonpath='{.status.url}' | cut -d "/" -f 3)

First, check if the server is ready:

grpcurl \
-plaintext \
-proto ${PROTO_FILE} \
-authority ${SERVICE_HOSTNAME} \
${INGRESS_HOST}:${INGRESS_PORT} \
inference.GRPCInferenceService.ServerReady
Expected Output
{
"ready": true
}

To test the model with inference requests, create an input file iris-input-grpc.json:

{
"model_name": "xgboost-iris-grpc",
"inputs": [
{
"name": "input-0",
"shape": [2, 4],
"datatype": "FP32",
"contents": {
"fp32_contents": [6.8, 2.8, 4.8, 1.4, 6.0, 3.4, 4.5, 1.6]
}
}
]
}

Send the gRPC inference request:

grpcurl \
-vv \
-plaintext \
-proto ${PROTO_FILE} \
-authority ${SERVICE_HOSTNAME} \
-d @ \
${INGRESS_HOST}:${INGRESS_PORT} \
inference.GRPCInferenceService.ModelInfer \
<<< $(cat "$INPUT_PATH")
Expected Output
Resolved method descriptor:
// The ModelInfer API performs inference using the specified model. Errors are
// indicated by the google.rpc.Status returned for the request. The OK code
// indicates success and other codes indicate failure.
rpc ModelInfer ( .inference.ModelInferRequest ) returns ( .inference.ModelInferResponse );

Request metadata to send:
(empty)

Response headers received:
content-type: application/grpc
date: Mon, 09 Oct 2023 11:07:26 GMT
grpc-accept-encoding: identity, deflate, gzip
server: istio-envoy
x-envoy-upstream-service-time: 16

Estimated response size: 83 bytes

Response contents:
{
"modelName": "xgboost-iris-grpc",
"id": "41738561-7219-4e4a-984d-5fe19bed6298",
"outputs": [
{
"name": "output-0",
"datatype": "INT32",
"shape": [
"2"
],
"contents": {
"intContents": [
1,
1
]
}
}
]
}

Response trailers received:
(empty)
Sent 1 request and received 1 response