Skip to content

Inference Logger

Basic Inference Logger

Create Message Dumper

Create a message dumper Knative Service which will print out the CloudEvents it receives.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: message-dumper
spec:
  template:
    spec:
      containers:
      - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event_display
kubectl create -f message-dumper.yaml

Create an InferenceService with Logger

Create a sklearn predictor with the logger which points at the message dumper url.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
  predictor:
    logger:
      mode: all
      url: http://message-dumper.default/
    model:
      modelFormat:
        name: sklearn
      storageUri: gs://kfserving-examples/models/sklearn/1.0/model
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
  predictor:
    logger:
      mode: all
      url: http://message-dumper.default/
    sklearn:
      storageUri: gs://kfserving-examples/models/sklearn/1.0/model

Note

Here we set the url explicitly, otherwise it defaults to the namespace knative broker or the value of DefaultUrl in the logger section of the inference service configmap.

kubectl create -f sklearn-basic-logger.yaml

We can now send a request to the sklearn model. The first step is to determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT

MODEL_NAME=sklearn-iris
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)

curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH

Expected Output

{
    "predictions": [1, 1]
}

Check CloudEvents

Check the logs of the message dumper, we can see the CloudEvents associated with our previous curl request.

kubectl logs $(kubectl get pod -l serving.knative.dev/service=message-dumper -o jsonpath='{.items[0].metadata.name}') user-container

Expected Output

☁️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
  type: org.kubeflow.serving.inference.request
  source: http://localhost:9081/
  id: 0009174a-24a8-4603-b098-09c8799950e9
  time: 2021-04-10T00:23:26.0789529Z
  datacontenttype: application/json
Extensions,
  endpoint:
  inferenceservicename: sklearn-iris
  namespace: default
  traceparent: 00-90bdf848647d50283394155d2df58f19-84dacdfdf07cadfc-00
Data,
  {
    "instances": [
      [
        6.8,
        2.8,
        4.8,
        1.4
      ],
      [
        6.0,
        3.4,
        4.5,
        1.6
      ]
    ]
  }
☁️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
  type: org.kubeflow.serving.inference.response
  source: http://localhost:9081/
  id: 0009174a-24a8-4603-b098-09c8799950e9
  time: 2021-04-10T00:23:26.080736102Z
  datacontenttype: application/json
Extensions,
  endpoint:
  inferenceservicename: sklearn-iris
  namespace: default
  traceparent: 00-55de1514e1d23ee17eb50dda6167bb8c-b6c6e0f6dd8f741d-00
Data,
  {
    "predictions": [
      1,
      1
    ]
  }

Inference Logger with Request Header Metadata

The request metadata headers can be included in the log message by specifying the metadata header names in the metadataHeaders field of the InferenceService CRD. These headers are included in the CloudEvent extension attribute metadata.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
predictor:
  logger:
    mode: all
    url: http://message-dumper.default/
    metadataHeaders:
      - "x-request-id"
      - "x-b3-traceid"
      - "x-b3-spanid"
      - "x-b3-flags"
  model:
    modelFormat:
      name: sklearn
    storageUri: gs://kfserving-examples/models/sklearn/1.0/model

Inference Logger with TLS

The InferenceService logger can be configured to use TLS for secure communication. The logger can be configured to use TLS by configuring the logger configuration in the inferenceservice-config ConfigMap.

  1. Create a ConfigMap with the CaBundle cert in the same namespace as the InferenceService. By default, Ca cert file should be named as service-ca.crt. If you want to use a different name, update the caCertFile field in the logger configuration section of the inferenceservice-config ConfigMap.

kubectl create configmap example-com-ca --from-file=service-ca.crt=/path/to/example-ca.crt -n <isvc-namespace> 
2. Update the caBundle field with the name of the ConfigMap created from the above step in the logger configuration section of the inferenceservice-config ConfigMap. The CaBundle will be mounted as a volume on the agent and the CA cert will be used to configure the transport.

Tip

You can skip the TLS verification by setting tlsSkipVerify to true in the logger configuration section of the inferenceservice-config ConfigMap. But, Note that this will be applied cluster-wide and will affect all the InferenceServices in the cluster.

Example configuration

logger: |-
    {
        "image" : "kserve/agent:latest",
        "memoryRequest": "100Mi",
        "memoryLimit": "1Gi",
        "cpuRequest": "100m",
        "cpuLimit": "1",
        "defaultUrl": "http://default-broker",
        "caBundle": "example-com-ca",
        "caCertFile": "service-ca.crt",
        "tlsSkipVerify": false
    }

Considerations

  • If TLS is configured in ConfigMap, but the bundle is not available or the CA cert is not found, the logger will use plain-text HTTP with no TLS. This is to preserve the backward compatibility with older versions which do not support TLS.
  • If TLS is configured, but the logger's endpoint protocol scheme is of type http, the inference logger will use the plain-text HTTP with no TLS.

Constraints

  • The CA cert file should be in the same namespace as the InferenceService.
  • You can only specify one CA cert per namespace.
  • Since, the caBundle name and the caCertFile name are cluster wide configurations (configured in inferenceservice-config ConfigMap), the names cannot be changed for each namespace.

Knative Eventing Inference Logger

A cluster running with Knative Eventing installed, along with KServe.

Note

This was tested using Knative Eventing v0.17.

Create Message Dumper

Create a message dumper Knative service which will print out the CloudEvents it receives.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: message-dumper
spec:
  template:
    spec:
      containers:
      - image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event_display
kubectl apply -f message-dumper.yaml

Create Channel Broker

Create a Broker which allows you route events to consumers like InferenceService.

apiVersion: eventing.knative.dev/v1
kind: broker
metadata:
  name: default
kubectl apply -f broker.yaml

kubectl get broker default

Take note of the broker URL as that is what we'll be using in the InferenceService later on.

Create Trigger

We now create a trigger to forward the events to message-dumper service. The trigger can specify a filter that enables selection of relevant events based on the Cloud Event context attributes.

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
  name: message-dumper-trigger
spec:
  broker: default
  subscriber:
    ref:
      apiVersion: serving.knative.dev/v1
      kind: Service
      name: message-dumper
kubectl create -f trigger.yaml

Create an InferenceService with Logger

Create a sklearn predictor with the logger url pointing to the Knative eventing multi-tenant broker in knative-eventing namespace.

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
  predictor:
    minReplicas: 1
    logger:
      mode: all
      url: http://broker-ingress.knative-eventing.svc.cluster.local/default/default
    model:
      modelFormat:
        name: sklearn
      storageUri: gs://kfserving-examples/models/sklearn/1.0/model
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
  predictor:
    minReplicas: 1
    logger:
      mode: all
      url: http://broker-ingress.knative-eventing.svc.cluster.local/default/default
    sklearn:
      storageUri: gs://kfserving-examples/models/sklearn/1.0/model

Apply the sklearn-knative-eventing.yaml.

kubectl create -f sklearn-knative-eventing.yaml

We can now send a request to the sklearn model. The first step is to determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT

MODEL_NAME=sklearn-iris
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)

curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH

Expected Output

{
    "predictions": [1, 1]
}

Check CloudEvents

Check the logs of the message dumper, we can see the CloudEvents associated with our previous curl request.

kubectl logs $(kubectl get pod -l serving.knative.dev/service=message-dumper -o jsonpath='{.items[0].metadata.name}') user-container

Expected Output

☁️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
  type: org.kubeflow.serving.inference.request
  source: http://localhost:9081/
  id: defb5816-35f7-4947-a2b1-b9e5d7764ad2
  time: 2021-04-10T01:22:16.498917288Z
  datacontenttype: application/json
Extensions,
  endpoint:
  inferenceservicename: sklearn-iris
  knativearrivaltime: 2021-04-10T01:22:16.500656431Z
  knativehistory: default-kne-trigger-kn-channel.default.svc.cluster.local
  namespace: default
  traceparent: 00-16456300519c5227ffe5f784a88da2f7-2db26af1daae870c-00
Data,
  {
    "instances": [
      [
        6.8,
        2.8,
        4.8,
        1.4
      ],
      [
        6.0,
        3.4,
        4.5,
        1.6
      ]
    ]
  }
☁️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
  type: org.kubeflow.serving.inference.response
  source: http://localhost:9081/
  id: defb5816-35f7-4947-a2b1-b9e5d7764ad2
  time: 2021-04-10T01:22:16.500492939Z
  datacontenttype: application/json
Extensions,
  endpoint:
  inferenceservicename: sklearn-iris
  knativearrivaltime: 2021-04-10T01:22:16.501931207Z
  knativehistory: default-kne-trigger-kn-channel.default.svc.cluster.local
  namespace: default
  traceparent: 00-2156a24451a4d4ea575fcf6c4f52a672-2b6ea035c83d3200-00
Data,
  {
    "predictions": [
      1,
      1
    ]
  }
Back to top